论文标题

推理优化的AI和高性能计算,用于重力检测

Inference-optimized AI and high performance computing for gravitational wave detection at scale

论文作者

Chaturvedi, Pranshu, Khan, Asad, Tian, Minyang, Huerta, E. A., Zheng, Huihuo

论文摘要

我们介绍了一种用于重力波检测的人工智能模型的合奏,我们使用32个节点在2小时内使用32个节点(相当于192 Nvidia v100 GPU)训练了引力波检测。一旦经过全面训练,我们就使用NVIDIA Tensorrt优化了这些模型,以加速推理。我们在Argonne领导力计算机设施的Thetagpu超级计算机中部署了推理优化的AI集合,以进行分布式推理。使用整个thetagpu超级计算机,每个节点由20个节点组成,每个节点具有8个NVIDIA A100 A100张量核心GPU和2个AMD Rome CPU,我们的NVIDIA Tensorrt-optimightimized AI集团整个月都在整个Advanced Ligo数据(包括Hanford and Lighton Data Data Streams)中处理了整个月。我们的推理优化的AI集合保留了传统AI模型的相同敏感性,即,它标识了先前在此高级LIGO数据集中确定的所有已知的二进制黑洞合并,并报告了不误以为,同时也提供了与传统人工智能模型相比提供A 3X推理速度。我们使用时间幻灯片来量化AI集合的性能,以处理高达5年的高级LIGO数据。在此合成增强的数据集中,我们的AI集合报告了每个月搜索的高级LIGO数据的平均分类。我们还使用此5年的高级LIGO数据集介绍了我们AI集合的接收器操作特性曲线。这种方法提供了所需的工具,以大规模地进行加速,AI驱动的引力波检测。

We introduce an ensemble of artificial intelligence models for gravitational wave detection that we trained in the Summit supercomputer using 32 nodes, equivalent to 192 NVIDIA V100 GPUs, within 2 hours. Once fully trained, we optimized these models for accelerated inference using NVIDIA TensorRT. We deployed our inference-optimized AI ensemble in the ThetaGPU supercomputer at Argonne Leadership Computer Facility to conduct distributed inference. Using the entire ThetaGPU supercomputer, consisting of 20 nodes each of which has 8 NVIDIA A100 Tensor Core GPUs and 2 AMD Rome CPUs, our NVIDIA TensorRT-optimized AI ensemble processed an entire month of advanced LIGO data (including Hanford and Livingston data streams) within 50 seconds. Our inference-optimized AI ensemble retains the same sensitivity of traditional AI models, namely, it identifies all known binary black hole mergers previously identified in this advanced LIGO dataset and reports no misclassifications, while also providing a 3X inference speedup compared to traditional artificial intelligence models. We used time slides to quantify the performance of our AI ensemble to process up to 5 years worth of advanced LIGO data. In this synthetically enhanced dataset, our AI ensemble reports an average of one misclassification for every month of searched advanced LIGO data. We also present the receiver operating characteristic curve of our AI ensemble using this 5 year long advanced LIGO dataset. This approach provides the required tools to conduct accelerated, AI-driven gravitational wave detection at scale.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源