论文标题
Gushel-Mukai的一些动机六倍
Some Motivic Properties of Gushel-Mukai Sixfolds
论文作者
论文摘要
Gushel-Mukai六倍是所谓的Fano-K3品种的重要类别。在本文中,我们表明他们承认了乘法的chow-künneth分解模型代数等价,并且具有弗兰切塔属性。作为侧面的结果,我们表明双EPW六重奏和立方体具有Franchetta属性,Modulo代数等效性以及Gushel-Mukai六倍的Chow Ring的结果消失的结果。
Gushel-Mukai sixfolds are an important class of so-called Fano-K3 varieties. In this paper we show that they admit a multiplicative Chow-Künneth decomposition modulo algebraic equivalence and that they have the Franchetta property. As side results, we show that double EPW sextics and cubes have the Franchetta property, modulo algebraic equivalence, and some vanishing results for the Chow ring of Gushel-Mukai sixfolds.