论文标题

在线变更点检测加权和定向随机点产品图

Online Change Point Detection for Weighted and Directed Random Dot Product Graphs

论文作者

Marenco, Bernardo, Bermolen, Paola, Fiori, Marcelo, Larroca, Federico, Mateos, Gonzalo

论文摘要

给定一系列随机(定向和加权)图,我们解决了在线监视和检测基础数据分布变化的问题。我们的想法是基于多功能随机点产品图(RDPG)模型的图表来赋予顺序更改点检测(CPD)技术。我们考虑了明智的监视功能的高效,在线更新,该功能量化了流图观测值和名义RDPG之间的差异。通过序列中前几个图的光谱嵌入来推断此参考分布。我们表征该运行统计量的分布来选择保证误差控制的阈值,并且在简化近似值的情况下,我们提供了有关该算法检测分辨率和延迟的见解。最终结果是一种轻巧的在线CPD算法,这也可以通过RDPG嵌入的可解释性来解释。这与大多数现有的图形CPD方法形成鲜明对比,该方法依赖于广泛的计算,或者它们存储和处理整个观察到的时间序列。 RDPG模型的明显局限性仅在于它仅适用于未指向和未加权的图形,我们旨在在此处封闭的差距扩大CPD框架的范围。与以前的提案不同,我们用于加权图的非参数RDPG模型不需要先验权重的分布来执行推理和估计。此网络建模贡献超出了CPD的独立兴趣。我们为加权和直接图提供了新型在线CPD算法的开放源代码实现,其有效性和效率是通过(可重复的)合成和真实网络数据实验证明的。

Given a sequence of random (directed and weighted) graphs, we address the problem of online monitoring and detection of changes in the underlying data distribution. Our idea is to endow sequential change-point detection (CPD) techniques with a graph representation learning substrate based on the versatile Random Dot Product Graph (RDPG) model. We consider efficient, online updates of a judicious monitoring function, which quantifies the discrepancy between the streaming graph observations and the nominal RDPG. This reference distribution is inferred via spectral embeddings of the first few graphs in the sequence. We characterize the distribution of this running statistic to select thresholds that guarantee error-rate control, and under simplifying approximations we offer insights on the algorithm's detection resolution and delay. The end result is a lightweight online CPD algorithm, that is also explainable by virtue of the well-appreciated interpretability of RDPG embeddings. This is in stark contrast with most existing graph CPD approaches, which either rely on extensive computation, or they store and process the entire observed time series. An apparent limitation of the RDPG model is its suitability for undirected and unweighted graphs only, a gap we aim to close here to broaden the scope of the CPD framework. Unlike previous proposals, our non-parametric RDPG model for weighted graphs does not require a priori specification of the weights' distribution to perform inference and estimation. This network modeling contribution is of independent interest beyond CPD. We offer an open-source implementation of the novel online CPD algorithm for weighted and direct graphs, whose effectiveness and efficiency are demonstrated via (reproducible) synthetic and real network data experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源