论文标题
大小和光谱几何形状
The magnitude and spectral geometry
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We study the geometric significance of Leinster's notion of magnitude for a smooth manifold with boundary of arbitrary dimension, motivated by open questions for the unit disk in $\mathbb{R}^2$. For a large class of distance functions, including embedded submanifolds of Euclidean space and Riemannian manifolds satisfying a technical condition, we show that the magnitude function is well defined for $R\gg 0$ and admits a meromorphic continuation to sectors in $\mathbb{C}$. In the semiclassical limit $R \to \infty$, the magnitude function admits an asymptotic expansion, which determines the volume, surface area and integrals of generalized curvatures. Lower-order terms are computed by black box computer algebra. We initiate the study of magnitude analogues to classical questions in spectral geometry and prove an asymptotic variant of the Leinster-Willerton conjecture.