论文标题
紧凑的鸡蛋谐波形式和原始分解几乎是kähler歧管
Bott-Chern harmonic forms and primitive decompositions on compact almost Kähler manifolds
论文作者
论文摘要
令$(x,j,ω)$为紧凑型$ 2N $二维几乎是kähler歧管。我们证明了在特殊的双层群中的鸡巴洁牙和aeppli谐波形式的原始分解,并表明这种双层是最佳的。我们还展示了$(x,j,ω)$上的原始鸡肉,aeppli,dolbeault和$ \ partial $ harmonic forms的空间如何相关。
Let $(X,J,ω)$ be a compact $2n$-dimensional almost Kähler manifold. We prove primitive decompositions for Bott-Chern and Aeppli harmonic forms in special bidegrees and show that such bidegrees are optimal. We also show how the spaces of primitive Bott-Chern, Aeppli, Dolbeault and $\partial$-harmonic forms on $(X,J,ω)$ are related.