论文标题
对称立方层压板
Symmetric Cubic Laminations
论文作者
论文摘要
要调查$ d $ connectedness基因座,Thur \ -Ston研究了\ emph {$σ_d$ -invariant laminations},其中$σ_d$是单位圈子上的$ D $ -TUPLING地图,并为四千二次polynomials $ f(z)= z)= z^2 +c $构建了拓扑模型。本着瑟斯顿的工作精神,我们考虑了所有\ emph {立方对称多项式的空间} $f_λ(z)= z^3+λ^2 z $在一系列三篇文章中。在本文的本文中,我们将层压$ c_scl $与诱导因子空间$ {\ mathbb {s}}/c_scl $一起构建层压$ c_scl $。正如该系列的第三篇论文所验证的那样,$ {\ mathbb {s}}/c_scl $是\ emph {Cubic Symmetric Connected locus}的单调模型,即,所有立方对称性多项式的空间均具有连接的Julia Sets。
To investigate the degree $d$ connectedness locus, Thur\-ston studied \emph{$σ_d$-invariant laminations}, where $σ_d$ is the $d$-tupling map on the unit circle, and built a topological model for the space of quadratic polynomials $f(z) = z^2 +c$. In the spirit of Thurston's work, we consider the space of all \emph{cubic symmetric polynomials} $f_λ(z)=z^3+λ^2 z$ in a series of three articles. In the present paper, the first in the series, we construct a lamination $C_sCL$ together with the induced factor space ${\mathbb{S}}/C_sCL$ of the unit circle ${\mathbb{S}}$. As will be verified in the third paper of the series, ${\mathbb{S}}/C_sCL$ is a monotone model of the \emph{cubic symmetric connected locus}, i.e. the space of all cubic symmetric polynomials with connected Julia sets.