论文标题
原始黑洞暗物质在额外的尺寸的背景下
Primordial Black Hole Dark Matter in the Context of Extra Dimensions
论文作者
论文摘要
大型额外维度(LED)的理论(例如Arkani Hamed,Dimopoulos&Dvali场景)预测了TEV量表附近的“真” Planck量表$ M_ \ Star $,而观察到的$ M_ {PL} $是由于紧凑型额外尺寸的几何效应。这些理论允许在早期宇宙中创建原始黑洞(PBH),从碰撞的形成和随后在高温等离子体中的黑洞积聚,从而导致了一种新颖的冷暗物质(子)成分。由于它们在较高维的空间中存在,因此质量,半径和温度之间的通常关系被修改,从而导致其4维对应物的不同行为。在这里,我们得出了此类PBH候选物的宇宙学创造和演变,包括描述其蒸发的灰体因素,并通过直接观察蒸发产品的效果,对大爆炸核合成的影响以及宇宙微波背景角度角力谱从直接观察到LED PBH的限制。我们的限制涵盖了2至6个额外维度的方案,PBH群众的范围从10到$ 10^{21} $ g。我们发现,对于两个额外的维度,LED PBHS代表了一个可行的暗物质候选者,其范围可能在$ 10^{17} $和$ 10^{23} $ G之间,具体取决于普朗克秤和再加热温度。对于$ m_ \ star = 10 $ tev,这对应于PBH暗物质,质量为$ M \ simeq 10^{21} $ g,不受当前观测值的约束。我们进一步完善并更新对“普通”四维黑洞的约束。
Theories of large extra dimensions (LEDs) such as the Arkani-Hamed, Dimopoulos & Dvali scenario predict a "true" Planck scale $M_\star$ near the TeV scale, while the observed $M_{pl}$ is due to the geometric effect of compact extra dimensions. These theories allow for the creation of primordial black holes (PBHs) in the early Universe, from the collisional formation and subsequent accretion of black holes in the high-temperature plasma, leading to a novel cold dark matter (sub)component. Because of their existence in a higher-dimensional space, the usual relationship between mass, radius and temperature is modified, leading to distinct behaviour with respect to their 4-dimensional counterparts. Here, we derive the cosmological creation and evolution of such PBH candidates, including the greybody factors describing their evaporation, and obtain limits on LED PBHs from direct observation of evaporation products, effects on big bang nucleosynthesis, and the cosmic microwave background angular power spectrum. Our limits cover scenarios of 2 to 6 extra dimensions, and PBH masses ranging from 10 to $10^{21}$ g. We find that for two extra dimensions, LED PBHs represent a viable dark matter candidate with a range of possible black hole masses between $10^{17}$ and $10^{23}$ g depending on the Planck scale and reheating temperature. For $M_\star = 10$ TeV, this corresponds to PBH dark matter with a mass of $M \simeq 10^{21}$ g, unconstrained by current observations. We further refine and update constraints on "ordinary" four-dimension black holes.