论文标题

量子系统的库普曼分析

Koopman analysis of quantum systems

论文作者

Klus, Stefan, Nüske, Feliks, Peitz, Sebastian

论文摘要

Koopman操作员理论已成功地应用于各种研究领域的问题,例如流体动力学,分子动力学,气候科学,工程和生物学。应用包括检测亚稳态或相干集,粗粒,系统识别和控制。由随机微分方程和量子力学驱动的动态系统之间存在复杂的联系。在本文中,我们比较了基本状态的转化和尼尔森的随机力学,并演示了如何用于近似Koopman操作员开发的数据驱动方法来分析量子物理问题。此外,我们利用Schrödinger操作员与随机控制问题之间的关系,以表明现代数据驱动的随机控制方法可用于求解固定时间或想象的时间Schrödinger方程。我们的发现开辟了新的途径,使用数据科学的最近开发的工具来解决Schrödinger's方程。

Koopman operator theory has been successfully applied to problems from various research areas such as fluid dynamics, molecular dynamics, climate science, engineering, and biology. Applications include detecting metastable or coherent sets, coarse-graining, system identification, and control. There is an intricate connection between dynamical systems driven by stochastic differential equations and quantum mechanics. In this paper, we compare the ground-state transformation and Nelson's stochastic mechanics and demonstrate how data-driven methods developed for the approximation of the Koopman operator can be used to analyze quantum physics problems. Moreover, we exploit the relationship between Schrödinger operators and stochastic control problems to show that modern data-driven methods for stochastic control can be used to solve the stationary or imaginary-time Schrödinger equation. Our findings open up a new avenue towards solving Schrödinger's equation using recently developed tools from data science.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源