论文标题

通过嵌入的拉普拉斯差异进行多尺度图比较

Multiscale Graph Comparison via the Embedded Laplacian Discrepancy

论文作者

Tam, Edric, Dunson, David

论文摘要

Laplacian特征向量在图上捕获了自然社区结构,并广泛用于光谱聚类和多种学习中。然而,用于多尺度图比较的目的,将拉普拉斯特征向量用作嵌入。在这里,我们提出了嵌入的拉普拉斯差异(ELD),作为一种简单而快速的方法,可以根据图形社区结构的相似性比较(潜在不同尺寸)的图形。 ELD通过将图表示为通用,低维空间中的点云来运行,可以在该空间上有效地计算基于天然的基于瓦斯汀的距离。通过任何基于特征向量的方法比较图形的主要挑战是由于标志纸和基础对称性而引起的潜在歧义。 Eld利用一个简单的对称技巧来绕过任何标志歧义。为了比较由于基础对称性而没有任何歧义的图(即,频谱很简单),我们表明,ELD成为天然的伪金属,享有诸如图中的不变性属性的良好属性。为了将图与非简单频谱进行比较,我们提出了一个通过简单的扰动技术近似ELD的程序,以解决从基本对称的任何歧义。我们表明,使用矩阵扰动理论在轻度假设下,这种扰动是稳定的,这些假设在实践中是直接验证的。我们证明了ELD方法在模拟和真实数据集上的出色适用性。

Laplacian eigenvectors capture natural community structures on graphs and are widely used in spectral clustering and manifold learning. The use of Laplacian eigenvectors as embeddings for the purpose of multiscale graph comparison has however been limited. Here we propose the Embedded Laplacian Discrepancy (ELD) as a simple and fast approach to compare graphs (of potentially different sizes) based on the similarity of the graphs' community structures. The ELD operates by representing graphs as point clouds in a common, low-dimensional space, on which a natural Wasserstein-based distance can be efficiently computed. A main challenge in comparing graphs through any eigenvector-based approaches is the potential ambiguity that could arise due to sign-flips and basis symmetries. The ELD leverages a simple symmetrization trick to bypass any sign ambiguities. For comparing graphs that do not have any ambiguities due to basis symmetries (i.e. the spectrums are simple), we show that the ELD becomes a natural pseudo-metric that enjoys nice properties such as invariance under graph isomorphism. For comparing graphs with non-simple spectrums, we propose a procedure to approximate the ELD via a simple perturbation technique to resolve any ambiguity from basis symmetries. We show that such perturbations are stable using matrix perturbation theory under mild assumptions that are straightforward to verify in practice. We demonstrate the excellent applicability of the ELD approach on both simulated and real datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源