论文标题
用机器学习方法从档案光度法中对微透明事件的早期识别
Early recognition of Microlensing Events from Archival Photometry with Machine Learning Methods
论文作者
论文摘要
重力微覆盖方法是一种以银河系检测孤立的黑洞的强大方法。在微透镜事件期间,源亮度增加了,并且许多光度测验使用此功能来警告潜在事件。典型的微透镜事件显示出特征的光曲线,但是,某些爆发变量可能显示出与微透镜事件相似的光曲线,尤其是当观测的节奏不够致密时。我们的目的是设备一种使用仅使用其档案光度多波长数据来区分微透镜事件与任何其他类型的警报的方法。微透镜事件搜索中最常见的污染物是经典的BE型恒星,年轻的恒星物体和渐近巨型分支星星(如Miras)。我们使用数千个示例为警报恒星的主要类别建立了一个训练集,该恒星将光学与盖亚(Gaia),2个质量和共同目录的中红外大小相结合。我们使用监督的机器学习技术来构建用于警报分类的模型。我们验证了Gaia Science警报报道的120个微透镜事件的方法,这些事件是通过光谱和光学计量研究的。通过仅使用90%概率阈值的档案信息,我们正确地确定了三分之一的微透镜事件。我们还在368 GAIA警报的位置上运行分类器,这些位置被标记为微透镜事件的潜在候选者。在90%的概率阈值下,我们将38个微透镜事件和29种其他类型的变量分类。我们开发的机器学习支持的方法可以普遍用于当前和将来的警报调查,以便快速评估银河瞬变的分类并帮助决定进一步的后续观察。
Gravitational microlensing method is a powerful method to detect isolated black holes in the Milky Way. During a microlensing event brightness of the source increases and this feature is used by many photometric surveys to alert on potential events. A typical microlensing event shows a characteristic light curve, however, some outbursting variable stars may show similar light curves to microlensing events especially when the cadence of observations is not dense enough. Our aim is to device a method for distinguishing candidates for microlensing events from any other types of alerts using solely their archival photometric multi-wavelength data. The most common contaminants in the microlensing event search are Classical Be-type stars, Young Stellar Objects and Asymptotic Giant Branch stars such as Miras. We build a training set using thousands of examples for the main classes of alerting stars combining optical to mid-infrared magnitudes from Gaia, 2MASS and AllWISE catalogues. We used supervised machine learning techniques to build models for classification of alerts. We verified our method on 120 microlensing events reported by Gaia Science Alerts which were studied spectroscopically and photometrically. With the use of only archival information at 90% probability threshold we correctly identified one-third of the microlensing events. We also run our classifier on positions of 368 Gaia alerts which were flagged as potential candidates for microlensing events. At the 90% probability threshold we classified 38 microlensing events and 29 other types of variables. The machine learning supported method we developed can be universally used for current and future alerting surveys in order to quickly assess the classification of galactic transients and help decide on further follow-up observations.