论文标题
受监视的量子电路中的三倍的纠缠动态方式
Three-fold way of entanglement dynamics in monitored quantum circuits
论文作者
论文摘要
我们研究了基于Dyson的三个圆形合奏(圆形统一,正交和符号合奏;提示,COE和CSE)的量子电路中测量引起的纠缠过渡。我们利用在交替的局部随机统一门和以可调率进行的射影测量的一维电路的既定模型,对于从提示中提取的门而进行的投影测量值显示,随着测量速率的提高,它显示出从广泛到密集的纠缠量表的过渡。通过将这种情况与COE和CSE进行对比,我们可以洞悉大门的局部纠缠产生与测量值减少的纠缠之间的相互作用。为此,我们结合了不同合奏中各个门产生的纠缠的精确分析随机马trix结果,并为完整的量子电路组合了数值结果。这些考虑因素包括根据特征性的纠缠矩阵矩阵捕获Cartan Kak分解的本质的有效重塑,以及与CSE相关的反对称矩阵的特征值统计的一般结果。
We investigate the measurement-induced entanglement transition in quantum circuits built upon Dyson's three circular ensembles (circular unitary, orthogonal, and symplectic ensembles; CUE, COE and CSE). We utilise the established model of a one-dimensional circuit evolving under alternating local random unitary gates and projective measurements performed with tunable rate, which for gates drawn from the CUE is known to display a transition from extensive to intensive entanglement scaling as the measurement rate is increased. By contrasting this case to the COE and CSE, we obtain insights into the interplay between the local entanglement generation by the gates and the entanglement reduction by the measurements. For this, we combine exact analytical random-matrix results for the entanglement generated by the individual gates in the different ensembles, and numerical results for the complete quantum circuit. These considerations include an efficient rephrasing of the statistical entangling power in terms of a characteristic entanglement matrix capturing the essence of Cartan's KAK decomposition, and a general result for the eigenvalue statistics of antisymmetric matrices associated with the CSE.