论文标题

胎儿超声图像分析的深度学习算法的综述

A Review on Deep-Learning Algorithms for Fetal Ultrasound-Image Analysis

论文作者

Fiorentino, Maria Chiara, Villani, Francesca Pia, Di Cosmo, Mariachiara, Frontoni, Emanuele, Moccia, Sara

论文摘要

深度学习(DL)算法已成为处理超声(美国)胎儿图像的标准。尽管该领域已经有大量的调查文件,但其中大多数都集中在更广泛的医疗图像分析领域,或者不涵盖所有胎儿US DL应用。本文调查了该领域的最新工作,2017年之后总共发表了145篇研究论文。从方法论和应用程序的角度来分析和评论了每篇论文。我们将论文分类为(i)胎儿标准平面检测,(ii)解剖结构分析和(iii)生物特征参数估计。对于每个类别,提出了主要限制和开放问题。包括摘要表以促进不同方法之间的比较。总结了公共可用的数据集和通常用于评估算法性能的性能指标。本文以胎儿US图像分析的DL算法的当前最新算法的关键摘要以及对当前挑战的讨论,这些挑战必须由该领域的研究人员应对将研究方法转化为实际临床实践。

Deep-learning (DL) algorithms are becoming the standard for processing ultrasound (US) fetal images. Despite a large number of survey papers already present in this field, most of them are focusing on a broader area of medical-image analysis or not covering all fetal US DL applications. This paper surveys the most recent work in the field, with a total of 145 research papers published after 2017. Each paper is analyzed and commented on from both the methodology and application perspective. We categorized the papers in (i) fetal standard-plane detection, (ii) anatomical-structure analysis, and (iii) biometry parameter estimation. For each category, main limitations and open issues are presented. Summary tables are included to facilitate the comparison among the different approaches. Publicly-available datasets and performance metrics commonly used to assess algorithm performance are summarized, too. This paper ends with a critical summary of the current state of the art on DL algorithms for fetal US image analysis and a discussion on current challenges that have to be tackled by researchers working in the field to translate the research methodology into the actual clinical practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源