论文标题
理想化的分形树中的频率聚类和分解
Frequency clustering and disaggregation in idealized fractal tree
论文作者
论文摘要
通过数值建模和分析揭示了理想化的插曲二分法树中共振频率簇形成的模式。较大的群集的核心性与共享相同邻接矩阵的小世界网络相关。结构的拓扑结构和固有的对称性决定了对肢体几何形状扰动的模态特征和鲁棒性的分隔,并且不仅限于特定的异形指标。当肢体几何形状的空间对称性在一定水平以上的扰动时,我们会看到最大的簇的渗透。
The pattern of formation of resonant frequency clusters in idealized sympodial dichasium trees is revealed by numerical modeling and analysis. The larger cluster's cardinality correlates with that of a Small World Network, which share the same adjacency matrix. Topology and inherent symmetry of the structure dictate compartmentalization of the modal characteristics and robustness to perturbations to the limb geometry, and are not limited to a specific allometry. When the spatial symmetry of the limb geometry is perturbed above a certain level, we see percolation of the largest cluster.