论文标题

物理信息的神经网络从多个电解图学习心脏纤维方向

Physics-informed neural networks to learn cardiac fiber orientation from multiple electroanatomical maps

论文作者

Herrera, Carlos Ruiz, Grandits, Thomas, Plank, Gernot, Perdikaris, Paris, Costabal, Francisco Sahli, Pezzuto, Simone

论文摘要

我们提出了Fibernet,一种估计\ Emph {in-Vivo}人类心房的心脏纤维结构的方法,该方法是通过电动激活的多个导管记录中的。心脏纤维在心脏的电力功能中起着核心作用,但是它们很难确定体内,因此在现有的心脏模型中很少有特定于患者的特定于患者。 Fibernet通过解决具有物理信息的神经网络的逆问题来学习纤维布置。反问题等于从一组稀疏激活图中识别心脏传播模型的传导速度张量。多个地图的使用可以同时识别传导速度张量(包括局部纤维角)的所有组件。我们对合成2-D和3-D示例,扩散张量纤维和患者特异性病例进行了广泛的测试纤维。我们表明,在存在噪声的情况下,也足以准确捕获纤维。随着地图的较少,正规化的作用变得突出。此外,我们表明拟合的模型可以稳健地重现看不见的激活图。我们设想,纤维网将有助于创建特定于患者的个性化医学模型。完整代码可在http://github.com/fsahli/fibernet上找到。

We propose FiberNet, a method to estimate \emph{in-vivo} the cardiac fiber architecture of the human atria from multiple catheter recordings of the electrical activation. Cardiac fibers play a central role in the electro-mechanical function of the heart, yet they are difficult to determine in-vivo, and hence rarely truly patient-specific in existing cardiac models. FiberNet learns the fiber arrangement by solving an inverse problem with physics-informed neural networks. The inverse problem amounts to identifying the conduction velocity tensor of a cardiac propagation model from a set of sparse activation maps. The use of multiple maps enables the simultaneous identification of all the components of the conduction velocity tensor, including the local fiber angle. We extensively test FiberNet on synthetic 2-D and 3-D examples, diffusion tensor fibers, and a patient-specific case. We show that 3 maps are sufficient to accurately capture the fibers, also in the presence of noise. With fewer maps, the role of regularization becomes prominent. Moreover, we show that the fitted model can robustly reproduce unseen activation maps. We envision that FiberNet will help the creation of patient-specific models for personalized medicine. The full code is available at http://github.com/fsahli/FiberNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源