论文标题
一种深入的Q学习方法,用于在动态噪声的背景下优化视觉搜索策略
A deep Q-learning method for optimizing visual search strategies in backgrounds of dynamic noise
论文作者
论文摘要
人类通过不同的分辨率(foveated Visual System)处理视觉信息,并通过眼动通过高分辨率中央凹起到关注点来探索图像。贝叶斯理想搜索者(IS)采用了有关任务与任务相关信息的完整知识,可优化眼动策略并实现最佳搜索性能。 IS可以用作评估人眼运动最佳性的重要工具,并有可能提供指导以改善人类观察者的视觉搜索策略。 Najemnik和Geisler(2005)衍生出来的是空间1/F噪声的背景。相应的模板响应遵循高斯分布,可以分析确定最佳搜索策略。但是,当考虑更真实且复杂的背景(例如医学图像)时,IS的计算可能会棘手。现代的强化学习方法成功地应用于各种任务的最佳政策,不需要完全了解背景生成功能,并且可以潜在地应用于解剖背景。重要的第一步是验证加固学习方法的最佳性。在这项研究中,我们研究了采用Q-Network近似IS的增强学习方法的能力。我们证明,与Q-Network相对应的搜索策略与IS搜索策略一致。研究结果表明,使用Q-Network方法进行增强学习的潜力,以估计具有实际解剖背景的最佳眼动计划。
Humans process visual information with varying resolution (foveated visual system) and explore images by orienting through eye movements the high-resolution fovea to points of interest. The Bayesian ideal searcher (IS) that employs complete knowledge of task-relevant information optimizes eye movement strategy and achieves the optimal search performance. The IS can be employed as an important tool to evaluate the optimality of human eye movements, and potentially provide guidance to improve human observer visual search strategies. Najemnik and Geisler (2005) derived an IS for backgrounds of spatial 1/f noise. The corresponding template responses follow Gaussian distributions and the optimal search strategy can be analytically determined. However, the computation of the IS can be intractable when considering more realistic and complex backgrounds such as medical images. Modern reinforcement learning methods, successfully applied to obtain optimal policy for a variety of tasks, do not require complete knowledge of the background generating functions and can be potentially applied to anatomical backgrounds. An important first step is to validate the optimality of the reinforcement learning method. In this study, we investigate the ability of a reinforcement learning method that employs Q-network to approximate the IS. We demonstrate that the search strategy corresponding to the Q-network is consistent with the IS search strategy. The findings show the potential of the reinforcement learning with Q-network approach to estimate optimal eye movement planning with real anatomical backgrounds.