论文标题

DoubleU-NET ++:具有利用多尺度功能的椎体架构

DoubleU-Net++: Architecture with Exploit Multiscale Features for Vertebrae Segmentation

论文作者

Jahangard, Simindokht, Bonyani, Mahdi, Khosravi, Abbas

论文摘要

在各种医学应用(例如,电视手术)中,椎骨的准确分割是协助外科医生的重要先决条件。随着深度神经网络的成功发展,最近的研究集中在椎体分割的基本规则上。先前的作品包含大量参数,其细分仅限于一个视图。受到双NET的启发,我们提出了一个名为Double-Net ++的新型模型,其中DENSNET作为特征提取器,来自模块(CBAM)的卷积障碍物的特殊注意模块以及使用金字塔挤压注意力(PSA)模块用于改善提取特征。我们对Verse2020和Xvertseg数据集的三种不同视图(矢状,冠状和轴向)进行评估。与最先进的研究相比,我们的体系结构的训练速度更快,召回和F1得分作为评估(占4-6%),矢状视图的94%以上的结果和冠状视图的94%以上,而对于93%的轴向视图,对于Verse2020 DataSet,均获得了93%的轴向视图。同样,对于Xvertseg数据集,我们达到了矢状视图的精度,召回和F1得分的高于97%,冠状视图高于93%,而轴向视图的精度为93%,高于96%。

Accurate segmentation of the vertebra is an important prerequisite in various medical applications (E.g. tele surgery) to assist surgeons. Following the successful development of deep neural networks, recent studies have focused on the essential rule of vertebral segmentation. Prior works contain a large number of parameters, and their segmentation is restricted to only one view. Inspired by DoubleU-Net, we propose a novel model named DoubleU-Net++ in which DensNet as feature extractor, special attention module from Convolutional Block Attention on Module (CBAM) and, Pyramid Squeeze Attention (PSA) module are employed to improve extracted features. We evaluate our proposed model on three different views (sagittal, coronal, and axial) of VerSe2020 and xVertSeg datasets. Compared with state-of-the-art studies, our architecture is trained faster and achieves higher precision, recall, and F1-score as evaluation (imporoved by 4-6%) and the result of above 94% for sagittal view and above 94% for both coronal view and above 93% axial view were gained for VerSe2020 dataset, respectively. Also, for xVertSeg dataset, we achieved precision, recall,and F1-score of above 97% for sagittal view, above 93% for coronal view ,and above 96% for axial view.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源