论文标题
直接和基本的证明超图的内部和外部多项式的明确定义
A direct and elementary proof of the well-definedness of the interior and exterior polynomials of hypergraphs
论文作者
论文摘要
T.Kálmán(Tutte的多项式多项式的版本,Adv。Math。244(2013)823-873。)引入了内部和外部多项式,这些概括是Tutte polynomial $ t(x,y)$ t(1/x,1/x,1/x,1)$和$(1/y)的概括。这两个多项式是在固定的固定顺序下定义的,事实证明与使用多面体技术独立于订购。在本文中,类似于Tutte的原始证明,我们为超图的内部和外部多项式的明确定义提供了直接和基本的证明。
T. Kálmán (A version of Tutte's polynomial for hypergraphs, Adv. Math. 244 (2013) 823-873.) introduced the interior and exterior polynomials which are generalizations of the Tutte polynomial $T(x,y)$ on plane points $(1/x,1)$ and $(1,1/y)$ to hypergraphs. The two polynomials are defined under a fixed ordering of hyperedges, and are proved to be independent of the ordering using techniques of polytopes. In this paper, similar to the Tutte's original proof we provide a direct and elementary proof for the well-definedness of the interior and exterior polynomials of hypergraphs.