论文标题
Markoff类型的K3表面上的轨道
Orbits on K3 Surfaces of Markoff Type
论文作者
论文摘要
令$ \ mathcal {w} \ subset \ mathbb {p}^1 \ times \ mathbb {p}^1 \ times \ times \ mathbb {p}^1 $是消失的$(2,2,2,2)$的表面。这些表面承认来自三个投影的三个互动$ \ mathcal {w} \ to \ mathbb {p}^1 \ times \ times \ mathbb {p}^1 $,因此我们称它们为$ \ textit {tri-Invol-Invol nivol involention k3(tik3)表面} $。通过类似于经典的Markoff方程,我们说$ \ Mathcal {W} $是$ \ textit {Markoff Type(Mk3)} $的$ \ textit {Mk3)} $,如果它在其三个坐标中对称并且在双标志更改下不变。 MK3表面允许一组由三个参与,协调排列和符号更改生成的自动形态$ \ MATHCAL {G} $。在本文中,我们研究了Tik3和Mk3表面上点的$ \ Mathcal {G} $轨道结构。在有限的领域,我们研究了纤维连通性和大型轨道的存在,类似于Bourgain,Gamburd,Sarnak等的作品,用于经典的Markoff方程。对于特定的$ 1 $ - 参数家族Mk3表面$ \ MATHCAL {W} _K $,我们计算$ \ Mathcal {w} _k(\ Mathbb {f} _p {f} _p)$ prime $ p \ p \ p \ per fin fime fin lime113 $ fin as a a的完整$ \ mathcal {g} $ orbit结构$ \ MATHCAL {G} $ - ORBITS中的$ \ Mathcal {W} _K(\ Mathbb {C})$,包括一个尺寸的轨道家族$ 288 $由$ 9 $的曲线进行参数化。
Let $\mathcal{W}\subset\mathbb{P}^1\times\mathbb{P}^1\times\mathbb{P}^1$ be a surface given by the vanishing of a $(2,2,2)$-form. These surfaces admit three involutions coming from the three projections $\mathcal{W}\to\mathbb{P}^1\times\mathbb{P}^1$, so we call them $\textit{tri-involutive K3 (TIK3) surfaces}$. By analogy with the classical Markoff equation, we say that $\mathcal{W}$ is of $\textit{Markoff type (MK3)}$ if it is symmetric in its three coordinates and invariant under double sign changes. An MK3 surface admits a group of automorphisms $\mathcal{G}$ generated by the three involutions, coordinate permutations, and sign changes. In this paper we study the $\mathcal{G}$-orbit structure of points on TIK3 and MK3 surfaces. Over finite fields, we study fibral connectivity and the existence of large orbits, analogous to work of Bourgain, Gamburd, Sarnak and others for the classical Markoff equation. For a particular $1$-parameter family of MK3 surfaces $\mathcal{W}_k$, we compute the full $\mathcal{G}$-orbit structure of $\mathcal{W}_k(\mathbb{F}_p)$ for all primes $p\le113$, and we use this data as a guide to find many finite $\mathcal{G}$-orbits in $\mathcal{W}_k(\mathbb{C})$, including a family of orbits of size $288$ parameterized by a curve of genus $9$.