论文标题
部分可观测时空混沌系统的无模型预测
Efficient Near-Optimal Codes for General Repeat Channels
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Given a probability distribution $\mathcal{D}$ over the non-negative integers, a $\mathcal{D}$-repeat channel acts on an input symbol by repeating it a number of times distributed as $\mathcal{D}$. For example, the binary deletion channel ($\mathcal{D}=Bernoulli$) and the Poisson repeat channel ($\mathcal{D}=Poisson$) are special cases. We say a $\mathcal{D}$-repeat channel is square-integrable if $\mathcal{D}$ has finite first and second moments. In this paper, we construct explicit codes for all square-integrable $\mathcal{D}$-repeat channels with rate arbitrarily close to the capacity, that are encodable and decodable in linear and quasi-linear time, respectively. We also consider possible extensions to the repeat channel model, and illustrate how our construction can be extended to an even broader class of channels capturing insertions, deletions, and substitutions. Our work offers an alternative, simplified, and more general construction to the recent work of Rubinstein (arXiv:2111.00261), who attains similar results to ours in the cases of the deletion channel and the Poisson repeat channel. It also slightly improves the runtime and decoding failure probability of the polar codes constructions of Tal et al. (ISIT 2019) and of Pfister and Tal (arXiv:2102.02155) for the deletion channel and certain insertion/deletion/substitution channels. Our techniques follow closely the approaches of Guruswami and Li (IEEEToIT 2019) and Con and Shpilka (IEEEToIT 2020); what sets apart our work is that we show that a capacity-achieving code can be assumed to have an "approximate balance" in the frequency of zeros and ones of all sufficiently long substrings of all codewords. This allows us to attain near-capacity-achieving codes in a general setting. We consider this "approximate balance" result to be of independent interest, as it can be cast in much greater generality than repeat channels.