论文标题
部分可观测时空混沌系统的无模型预测
SelfRecon: Self Reconstruction Your Digital Avatar from Monocular Video
论文作者
论文摘要
我们提出了SelfRecon,这是一种穿着穿着的人体重建方法,结合了隐式和明确的表示,以从单眼自动旋转的人类视频中恢复时空连贯的几何形状。显式方法需要给定序列的预定义的模板网格,而对于特定主题,模板很难获取。同时,固定拓扑限制了重建精度和服装类型。隐式表示支持任意拓扑,并且由于其持续的性质可以代表高保真的几何形状。但是,很难集成多帧信息以制作下游应用程序的一致注册顺序。我们建议结合两种表示的优势。我们利用显式网格的差分遮罩丢失来获得相干的整体形状,而隐式表面上的细节则通过可微分的神经渲染进行了完善。同时,明确的网格会定期更新以调整其拓扑变化,并且一致性损失旨在匹配这两个表示。与现有方法相比,SelfRecon可以为任意服装的人提供具有自我监督的优化的任意服装的人。广泛的实验结果证明了其对实际捕获的单眼视频的有效性。源代码可在https://github.com/jby1993/selfreconcode上找到。
We propose SelfRecon, a clothed human body reconstruction method that combines implicit and explicit representations to recover space-time coherent geometries from a monocular self-rotating human video. Explicit methods require a predefined template mesh for a given sequence, while the template is hard to acquire for a specific subject. Meanwhile, the fixed topology limits the reconstruction accuracy and clothing types. Implicit representation supports arbitrary topology and can represent high-fidelity geometry shapes due to its continuous nature. However, it is difficult to integrate multi-frame information to produce a consistent registration sequence for downstream applications. We propose to combine the advantages of both representations. We utilize differential mask loss of the explicit mesh to obtain the coherent overall shape, while the details on the implicit surface are refined with the differentiable neural rendering. Meanwhile, the explicit mesh is updated periodically to adjust its topology changes, and a consistency loss is designed to match both representations. Compared with existing methods, SelfRecon can produce high-fidelity surfaces for arbitrary clothed humans with self-supervised optimization. Extensive experimental results demonstrate its effectiveness on real captured monocular videos. The source code is available at https://github.com/jby1993/SelfReconCode.