论文标题

使用GPU和基于均质化的Multigrid方法优化有效的混合拓扑优化

Efficient hybrid topology optimization using GPU and homogenization based multigrid approach

论文作者

Padhi, Arya Prakash, Chakraborty, Souvik, Chakrabarti, Anupam, Chowdhury, Rajib

论文摘要

我们提出了一种基于多机方法的新混合拓扑优化算法,该算法使用OpenMP和现代图形处理单元(GPU)的大量多线程功能结合了CPU的并行化策略。除了使用均质化策略达到了记忆需求的显着计算效率外。该算法已与MATLAB的Versitile Computing平台集成,以易于使用和自定义。状态方程的瓶颈重复解决方案已通过优化的几何多机方法以及CUDA并行化解决了计算时间的数量级,而不是当前的实现。使用均质化策略在多族方案中对辅助矩阵的辅助矩阵进行修改可消除GPU的记忆限制。 GPU的内存层次结构也已被利用,以进一步优化实现。所有这些启用了涉及涉及三维砖元素的结构解决方案,可以在标准的台式计算机或工作站中完成。使用多个示例(包括设计依赖性载荷和多层质量)来说明所提出的算法的性能。获得的结果表明了所提出方法的出色性能和可扩展性。

We propose a new hybrid topology optimization algorithm based on multigrid approach that combines the parallelization strategy of CPU using OpenMP and heavily multithreading capabilities of modern Graphics Processing Units (GPU). In addition to that significant computational efficiency in memory requirement has been achieved using homogenization strategy. The algorithm has been integrated with versitile computing platform of MATLAB for ease of use and customization. The bottlenecking repetitive solution of the state equation has been solved using an optimized geometric multigrid approach along with CUDA parallelization enabling an order of magnitude faster in computational time than current state of the art implementations. On-the-fly computation of auxiliary matrices in the multigrid scheme and modification in interpolation schemes using homogenization strategy removes memory limitation of GPUs. Memory hierarchy of GPU has also been exploited for further optimized implementations. All these enable solution of structures involving hundred millions of three dimensional brick elements to be accomplished in a standard desktop computer or a workstation. Performance of the proposed algorithm is illustrated using several examples including design dependent loads and multimaterial.Results obtained indicate the excellent performance and scalability of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源