论文标题
GenMod:一种具有随机输入的PDE的光谱表示的生成建模方法
GenMod: A generative modeling approach for spectral representation of PDEs with random inputs
论文作者
论文摘要
我们提出了一种量化具有随机参数的高维PDE系统中不确定性的方法,其中解决方案评估的数量很少。参数PDE溶液通常使用基于多项式混乱膨胀的光谱分解近似。对于我们考虑的系统类别(即具有有限的解决方案评估的高维度),系数由回归公式中的不确定的线性系统给出。这意味着需要其他假设,例如系数向量的稀疏性来近似解决方案。在这里,我们提出了一种方法,我们假设系数接近映射到系数的高维空间的生成模型的范围。我们的方法是启发的,是最近的工作,研究了如何将生成模型用于具有随机高斯测量矩阵的系统中的压缩传感。利用PDE理论对系数衰减速率的结果,我们构建了一个明确的生成模型,该模型可以预测多项式混乱系数幅度。我们开发的算法是为了找到我们称为GenMod的系数,由两个主要步骤组成。首先,我们使用正交匹配追踪预测系数符号。然后,我们假设系数与标志调整的生成模型的范围稀疏偏离。这使我们能够通过在生成模型的输入空间和稀疏向量的空间上解决非convex优化问题来找到系数。我们基于系数衰减速率界限,我们为Lipschitz连续生成模型和更特定的生成模型获得了理论恢复结果。我们检查了三个高维问题,并表明,对于所有三个示例,生成模型方法的表现优于较小样本量的稀疏性促进方法。
We propose a method for quantifying uncertainty in high-dimensional PDE systems with random parameters, where the number of solution evaluations is small. Parametric PDE solutions are often approximated using a spectral decomposition based on polynomial chaos expansions. For the class of systems we consider (i.e., high dimensional with limited solution evaluations) the coefficients are given by an underdetermined linear system in a regression formulation. This implies additional assumptions, such as sparsity of the coefficient vector, are needed to approximate the solution. Here, we present an approach where we assume the coefficients are close to the range of a generative model that maps from a low to a high dimensional space of coefficients. Our approach is inspired be recent work examining how generative models can be used for compressed sensing in systems with random Gaussian measurement matrices. Using results from PDE theory on coefficient decay rates, we construct an explicit generative model that predicts the polynomial chaos coefficient magnitudes. The algorithm we developed to find the coefficients, which we call GenMod, is composed of two main steps. First, we predict the coefficient signs using Orthogonal Matching Pursuit. Then, we assume the coefficients are within a sparse deviation from the range of a sign-adjusted generative model. This allows us to find the coefficients by solving a nonconvex optimization problem, over the input space of the generative model and the space of sparse vectors. We obtain theoretical recovery results for a Lipschitz continuous generative model and for a more specific generative model, based on coefficient decay rate bounds. We examine three high-dimensional problems and show that, for all three examples, the generative model approach outperforms sparsity promoting methods at small sample sizes.