论文标题

关于CIANI类型的属-3属非流囊曲线的最大性

On the maximality of genus-3 nonhyperelliptic curves of Ciani type

论文作者

Ohashi, Ryo

论文摘要

在本文中,我们研究了ciani曲线$ c:x^4 + y^4 + z^4 + rx^2y^2y^2 + sy^2z^2 + tz^2x^2x^2x^2 = 0 $ in积极特征$ p \ geq 3 $。我们将证明,如果$ c $是超专业,则其标准表格是最大或最小的$ \ mathbb {f} _ {p^2} $,而无需取出其$ \ mathbb {f} _ {p^2} $ - 表格。

In this paper, we study a Ciani curve $C: x^4 + y^4 + z^4 + rx^2y^2 + sy^2z^2 + tz^2x^2 = 0$ in positive characteristic $p \geq 3$. We will show that if $C$ is superspecial, then its standard form is maximal or minimal over $\mathbb{F}_{p^2}$ without taking its $\mathbb{F}_{p^2}$-form.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源