论文标题
关于差分包含的匡威安全问题:解决方案,规律性和时变障碍功能
On the Converse Safety Problem for Differential Inclusions: Solutions, Regularity, and Time-Varying Barrier Functions
论文作者
论文摘要
本文介绍了相反的定理,以屏障函数的障碍函数,用于建模为差异夹杂物的不受约束的连续时间系统。通过反例,我们表明缺乏自主和连续的屏障功能,从而证明了不仅安全,而且具有光滑右侧的非线性系统的安全性。以逆向Lyapunov定理为指导(非反应)稳定性,时变障碍函数和适当的无限条件是必要的,并且在系统右侧的轻度规律性条件下是必要的。更确切地说,我们提出了涉及有限马的边际函数的一般结构,该障碍功能的一般结构涉及有限的摩托套件。使用设定值和非平滑分析的技术,我们表明,这种功能可以确保系统安全时的安全性。此外,我们表明所提出的屏障函数构建继承了所提出的可触及集合的规律性。此外,当系统安全且平滑时,我们将建立在构造的屏障功能的基础上,以显示出平稳的屏障功能以确保安全性的存在。还提出了与文献中结果的比较和关系。
This paper presents converse theorems for safety in terms of barrier functions for unconstrained continuous-time systems modeled as differential inclusions. Via a counterexample, we show the lack of existence of autonomous and continuous barrier functions certifying safety for a nonlinear system that is not only safe but also has a smooth right-hand side. Guided by converse Lyapunov theorems for (non-asymptotic) stability,time-varying barrier functions and appropriate infinitesimal conditions are shown to be both necessary as well as sufficient under mild regularity conditions on the right-hand side of the system. More precisely, we propose a general construction of a time-varying barrier function in terms of a marginal function involving the finite-horizon reachable set. Using techniques from set-valued and nonsmooth analysis, we show that such a function guarantees safety when the system is safe. Furthermore, we show that the proposed barrier function construction inherits the regularity properties of the proposed reachable set. In addition, when the system is safe and smooth, we build upon the constructed barrier function to show the existence of a smooth barrier function guaranteeing safety. Comparisons and relationships to results in the literature are also presented.