论文标题

XNLP完整性,用于具有线性结构的图形上的参数化问题

XNLP-completeness for Parameterized Problems on Graphs with a Linear Structure

论文作者

Bodlaender, Hans L., Groenland, Carla, Jacob, Hugo, Jaffke, Lars, Lima, Paloma T.

论文摘要

在本文中,我们将XNLP级展示为通过线性宽度测量参数参数的许多硬性问题的自然位置。这加强了现有的$ w [1] $ - 这些问题的硬度证明,因为XNLP硬度意味着$ W [t] $ - 所有$ t $的硬度。它还通过pilipczuk和wrochna的猜想[TOCT 2018]表明,对于此类问题的任何XP算法都可能需要XP空间。 特别是,我们显示了XNLP完整性的自然问题,该自然问题通过路径 - 线性元素宽度和线性模拟宽度参数参数。我们认为的问题是独立的集,主导集,奇数循环横向,($ q $ - )着色,最大切割,最大常规诱导子图,反馈顶点集,电容(红蓝)主导集和双部分带宽。

In this paper, we showcase the class XNLP as a natural place for many hard problems parameterized by linear width measures. This strengthens existing $W[1]$-hardness proofs for these problems, since XNLP-hardness implies $W[t]$-hardness for all $t$. It also indicates, via a conjecture by Pilipczuk and Wrochna [ToCT 2018], that any XP algorithm for such problems is likely to require XP space. In particular, we show XNLP-completeness for natural problems parameterized by pathwidth, linear clique-width, and linear mim-width. The problems we consider are Independent Set, Dominating Set, Odd Cycle Transversal, ($q$-)Coloring, Max Cut, Maximum Regular Induced Subgraph, Feedback Vertex Set, Capacitated (Red-Blue) Dominating Set, and Bipartite Bandwidth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源