论文标题
粘性液体系统系统及其数值近似的输出反馈控制
Output-Feedback Control of Viscous Liquid-Tank System and its Numerical Approximation
论文作者
论文摘要
我们解决了由液体建模的液体的输出反馈稳定问题。控制输入是储罐的加速度,并使用对照Lyapunov功能方法。测量值是储罐位置和液位在储罐壁上。控制方案是状态反馈定律与储罐速度和液体动量的功能观察者的组合。提出了四种不同类型的输出反馈稳定器。为了估算储罐速度,使用全阶观察者和减少阶观察,而未测量的液体动量则是通过使用适当的标量滤波器估算的,或者被忽略。减少的订单观察者与完整的观察者有所不同,因为它省略了测得的储罐位置的估计。在每种情况下,都可以实现闭环系统与所需平衡点的指数收敛。提供了一种算法,该算法可以保证机器人手臂可以将一杯水移至预先指定的位置,无论玻璃有多满,而不会从玻璃中洒出水,而不会散发出残留的端点倾斜,而无需测量水位动量和玻璃速度。最后,提出的输出反馈定律的效率通过数值示例验证,并通过使用简单的有限差分数值方案获得。确定所提出的显式,有限差异方案的特性。
We solve the output-feedback stabilization problem for a tank with a liquid modeled by the viscous Saint-Venant PDE system. The control input is the acceleration of the tank and a Control Lyapunov Functional methodology is used. The measurements are the tank position and the liquid level at the tank walls. The control scheme is a combination of a state feedback law with functional observers for the tank velocity and the liquid momentum. Four different types of output feedback stabilizers are proposed. A full-order observer and a reduced-order observer are used in order to estimate the tank velocity while the unmeasured liquid momentum is either estimated by using an appropriate scalar filter or is ignored. The reduced order observer differs from the full order observer because it omits the estimation of the measured tank position. Exponential convergence of the closed-loop system to the desired equilibrium point is achieved in each case. An algorithm is provided that guarantees that a robotic arm can move a glass of water to a pre-specified position no matter how full the glass is, without spilling water out of the glass, without residual end point sloshing and without measuring the water momentum and the glass velocity. Finally, the efficiency of the proposed output feedback laws is validated by numerical examples, obtained by using a simple finite-difference numerical scheme. The properties of the proposed, explicit, finite-difference scheme are determined.