论文标题

Robinson-Trautmann和Kundt几何形状的分类很大

Classification of Robinson-Trautmann and Kundt Geometries with Large D Limit

论文作者

Kirezli, Pınar

论文摘要

研究了较高维,无剪切,无扭曲,扩展(或非扩展)时空的代数分类,并以$ d \ rightarrow \ infty $的限制进行了研究。根据我们的计算,类似于任何任意维度$ d> 4 $的分类,此时空是I(b)或更特别的类型。但是,由于采用了尺寸$ d \ rightarrow \ infty $的限制的方法,因此获得了Weyl标量的组件。如果不求解字段方程,则通过确定验证条件为Weyl标量消失的组件,时空是I型I(a),II(A-B-C-D),III(A-B-C-D),III型(A-B),N型N型,N型和类型O,用于原代Weyl weyl Aligned nulned Null null null direciton(wand),以及$ i_} $} $} $} $} $} $} $} $} $} D(A-B-C-D)用于二级棒。

Algebraic classification of higher dimensional, shear-free, twist-free, expanding (or non-expanding) spacetime is studied with the limit of $D\rightarrow\infty$. Similar to classification of any arbitrary dimension $D>4$, this spacetime is Type I(b) or more special, according to our calculations. However, thanks to the method of taking the limit of dimension $D\rightarrow \infty$, the components of Weyl scalar are obtained much simpler. Without solving field equations, by determining obligotary conditions to the components of Weyl scalar vanish, the spacetime is classified Type I(a), Type II(a-b-c-d), Type III(a-b), Type N and Type O for primary Weyl aligned null direciton (WAND), and Type $I_{i}$, Type $II_{i}$, Type $III_{i}$ and Type D(a-b-c-d) for secondary WAND.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源