论文标题

蛋白质结构表示学习的方向感知图神经网络学习

Orientation-Aware Graph Neural Networks for Protein Structure Representation Learning

论文作者

Li, Jiahan, Luo, Shitong, Deng, Congyue, Cheng, Chaoran, Guan, Jiaqi, Guibas, Leonidas, Peng, Jian, Ma, Jianzhu

论文摘要

通过折叠成特定的3D结构,蛋白质在生物中起着关键作用。要从下游任务的蛋白质结构中学习有意义的表示,不仅全球骨干拓扑,而且还应考虑氨基酸之间的局部细粒度方向关系。在这项工作中,我们提出了方向感知的图形神经网络(OAGNNS),以更好地感知蛋白质结构中的几何特征(例如,内部保留扭转角,间隔方向)。将单个权重从标量扩大到3D向量,我们构建了一组丰富的几何操作,以处理给定结构的经典和(3)表示。为了将我们设计的感知单元插入现有的图形神经网络中,我们进一步引入了一个模棱两可的消息传递范式,在维持SO(3)在全球范围内保持SO(3)等级时的多功能性。实验表明,与经典网络相比,我们的Oagnn具有显着感知几何定向特征的能力。 Oagnns在与蛋白质3D结构有关的各种计算生物学应用上也达到了最先进的性能。该代码可从https://github.com/ced3-han/oagnn/tree/main获得。

By folding into particular 3D structures, proteins play a key role in living beings. To learn meaningful representation from a protein structure for downstream tasks, not only the global backbone topology but the local fine-grained orientational relations between amino acids should also be considered. In this work, we propose the Orientation-Aware Graph Neural Networks (OAGNNs) to better sense the geometric characteristics in protein structure (e.g. inner-residue torsion angles, inter-residue orientations). Extending a single weight from a scalar to a 3D vector, we construct a rich set of geometric-meaningful operations to process both the classical and SO(3) representations of a given structure. To plug our designed perceptron unit into existing Graph Neural Networks, we further introduce an equivariant message passing paradigm, showing superior versatility in maintaining SO(3)-equivariance at the global scale. Experiments have shown that our OAGNNs have a remarkable ability to sense geometric orientational features compared to classical networks. OAGNNs have also achieved state-of-the-art performance on various computational biology applications related to protein 3D structures. The code is available at https://github.com/Ced3-han/OAGNN/tree/main.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源