论文标题
通过纠缠频谱对无序拓扑绝缘子的深度学习
Deep learning for disordered topological insulators through entanglement spectrum
论文作者
论文摘要
在相互空间中可以很好地理解了晶体系统拓扑不变的计算,从而可以对各种材料进行拓扑分类。在这项工作中,我们提出了一种基于纠缠频谱的新技术,该技术可用于识别无不平等能力的系统的隐藏拓扑。通过训练神经网络以使用从晶体或弱失调相处获得的纠缠谱区域区分微不足道和拓扑阶段,我们可以预测通用无序系统的拓扑相图。与常用的威尔逊环路技术相比,这种方法对于无间隙系统特别有用,同时提供了计算加速度。我们的方法在基于Wilson-Dirac晶格Hamiltonian的二维模型中进行了说明。
Calculation of topological invariants for crystalline systems is well understood in reciprocal space, allowing for the topological classification of a wide spectrum of materials. In this work, we present a new technique based on the entanglement spectrum, which can be used to identify the hidden topology of systems without translational invariance. By training a neural network to distinguish between trivial and topological phases using the entanglement spectrum obtained from crystalline or weakly disordered phases, we can predict the topological phase diagram for generic disordered systems. This approach becomes particularly useful for gapless systems, while providing a computational speed-up compared to the commonly used Wilson loop technique for gapful situations. Our methodology is illustrated in two-dimensional models based on the Wilson-Dirac lattice Hamiltonian.