论文标题
旋转杂质,威尔逊线条和半典型
Spin Impurities, Wilson Lines and Semiclassics
论文作者
论文摘要
我们考虑在保形场理论中具有大量子数的线缺陷。首先,我们考虑自旋杂质,无论是免费的标量三胞胎还是Wilson-Fisher $ O(3)$型号。对于自由标量三重态,我们找到了一个丰富的相图,其中包括一个扰动固定点,新的非扰动固定点和失控的制度。为了获得这些结果,我们开发了一种新的半经典方法。对于Wilson-Fisher模型,我们提出了一个替代描述,该描述在较大的自旋极限中变得薄弱。这使我们能够绘制相图并获得对$ 2+1 $尺寸磁体的大型自旋杂质的许多严格预测。最后,我们还研究了$ 1/2 $ -BPS WILSON LINE中的量规组的大型表示,级别为1 $ \ MATHCAL {N} = 2 $ SUPERCON-CONSURAL FIELD TARIESION。我们将结果与磁体中大型自旋杂质的定性行为进行了对比。
We consider line defects with large quantum numbers in conformal field theories. First, we consider spin impurities, both for a free scalar triplet and in the Wilson-Fisher $O(3)$ model. For the free scalar triplet, we find a rich phase diagram that includes a perturbative fixed point, a new nonperturbative fixed point, and runaway regimes. To obtain these results, we develop a new semiclassical approach. For the Wilson-Fisher model, we propose an alternative description, which becomes weakly coupled in the large spin limit. This allows us to chart the phase diagram and obtain numerous rigorous predictions for large spin impurities in $2+1$ dimensional magnets. Finally, we also study $1/2$-BPS Wilson lines in large representations of the gauge group in rank-1 $\mathcal{N}=2$ superconformal field theories. We contrast the results with the qualitative behavior of large spin impurities in magnets.