论文标题
来自神经网络表示的耦合群集精度的红外光谱
Infrared spectra at coupled cluster accuracy from neural network representations
论文作者
论文摘要
红外光谱是阐明分子结构,监测反应并观察构象变化的关键,同时提供有关结构和动力学特性的信息。这使得基于第一原理理论的红外光谱的准确预测是非常理想的追求。事实证明,分子动力学模拟是针对此任务的一种特别强大的方法,尽管需要计算大量分子构型的能量,力和偶极矩随时间的函数。这就解释了为什么高度准确的第一原理方法(例如耦合的群集理论)到目前为止无法预测有限温度下大系统的完全非谐波振动光谱。在这里,我们通过使用能量,力,尤其是偶极子的神经网络表示来向前推进尖端机器学习技术,以完全预测“金标准”耦合群集精度,这些光谱适用于与质子化水簇一样大的质子化水簇,以其Extended Zundel构造中的质子化水簇。此外,我们表明,该方法可以超出神经网络模型开发过程中考虑的数据范围,从而可以计算出无法访问的大型系统的有限型红外光谱,无法显式耦合群集计算。这实质上扩大了迄今为止的理论光谱准确性,速度和系统大小的现有限制,并为预测振动光谱的预测以及对复杂分子内和分子间耦合的理解开辟了许多途径。
Infrared spectroscopy is key to elucidate molecular structures, monitor reactions and observe conformational changes, while providing information on both structural and dynamical properties. This makes the accurate prediction of infrared spectra based on first-principle theories a highly desirable pursuit. Molecular dynamics simulations have proven to be a particularly powerful approach for this task, albeit requiring the computation of energies, forces and dipole moments for a large number of molecular configurations as a function of time. This explains why highly accurate first principles methods, such as coupled cluster theory, have so far been inapplicable for the prediction of fully anharmonic vibrational spectra of large systems at finite temperatures. Here, we push cutting-edge machine learning techniques forward by using neural network representations of energies, forces and in particular dipoles to predict such infrared spectra fully at "gold standard" coupled cluster accuracy as demonstrated for protonated water clusters as large as the protonated water hexamer, in its extended Zundel configuration. Furthermore, we show that this methodology can be used beyond the scope of the data considered during the development of the neural network models, allowing for the computation of finite-temperature infrared spectra of large systems inaccessible to explicit coupled cluster calculations. This substantially expands the hitherto existing limits of accuracy, speed and system size for theoretical spectroscopy and opens up a multitude of avenues for the prediction of vibrational spectra and the understanding of complex intra- and intermolecular couplings.