论文标题
抛物线方程中加权梯度的强烈收敛,并应用于跨扩散系统的全球通用可溶性
Strong convergence of weighted gradients in parabolic equations and applications to global generalized solvability of cross-diffusive systems
论文作者
论文摘要
在本文的第一部分中,我们表明$(v_ {0 \ varepsilon})_ {\ varepsilon \ in(0,1)} $ in $ l^1(ω)$和$(f _ {\ varepsilon})$(\ varepsilon})_ {\ varepsiLon in(0,1) $ l _ {\ textrm {loc}}}^1(\ edlineω\ times [0,\ infty))$不仅足以结论到最初边界值问题的解决方案\ begin \ begin {align*} \ begin {case} v _ {\ varepsilon t} =Δv_\ varepsilon + f_ \ varepsilon(x,x,t)&\ text {in $ω\ times(0,\ infty)$},\\ \\ \partial_νv_\ varepsilon = 0&\ text {on $ \ partialω\ times(0,\ infty)$},\\ v_ \ varepsilon(\ cdot,0)= v_ {0 \ varepsilon}&\ text {in $ω$}, \ end {cases} \ end {align*}我们在平滑的,有限的域$ω$中考虑,收敛到极限问题的独特弱解决方案,但是在$ v_ \ varepsilon $中,某些加权梯度在$ l _ {\ textrm {loc {loc {loc {loc {loc {loc {loc {loc {loc {loc {loc {loc {loc {loc {loc {loc {loc {loc {loc {loc {loc {loc {loc {loc {loc {loc {loc {loc {loc {loc {loc { 然后,我们利用这些发现来获取各种跨排水系统的全球通用解决方案。除其他外,我们建立了系统\ begin {align*}的全局广义可溶解性 \ begin {case} u_t =Δu -χ\ nabla \ cdot(\ frac {u} {v} {v} \ nabla v) + g(u),\\ v_t =ΔV -UV, \end{cases} \end{align*} where $χ> 0$ and $g \in C^1([0, \infty))$ are given, merely provided that ($g(0) \geq 0$ and) $-g$ grows superlinearily.该结果符合所有空间维度,也不需要任何对称性假设,也不需要某些参数的较小性。因此,我们扩展了Lankeit和Lankeit证明的四次增长$ G $的相应结果(非线性,32(5):1569---1596,2019)。
In the first part of the present paper, we show that strong convergence of $(v_{0 \varepsilon})_{\varepsilon \in (0, 1)}$ in $L^1(Ω)$ and weak convergence of $(f_{\varepsilon})_{\varepsilon \in (0, 1)}$ in $L_{\textrm{loc}}^1(\overline Ω\times [0, \infty))$ not only suffice to conclude that solutions to the initial boundary value problem \begin{align*} \begin{cases} v_{\varepsilon t} = Δv_\varepsilon + f_\varepsilon(x, t) & \text{in $Ω\times (0, \infty)$}, \\ \partial_νv_\varepsilon = 0 & \text{on $\partial Ω\times (0, \infty)$}, \\ v_\varepsilon(\cdot, 0) = v_{0 \varepsilon} & \text{in $Ω$}, \end{cases} \end{align*} which we consider in smooth, bounded domains $Ω$, converge to the unique weak solution of the limit problem, but that also certain weighted gradients of $v_\varepsilon$ converge strongly in $L_{\textrm{loc}}^2(\overline Ω\times [0, \infty))$ along a subsequence. We then make use of these findings to obtain global generalized solutions to various cross-diffusive systems. Inter alia, we establish global generalized solvability of the system \begin{align*} \begin{cases} u_t = Δu - χ\nabla \cdot (\frac{u}{v} \nabla v) + g(u), \\ v_t = Δv - uv, \end{cases} \end{align*} where $χ> 0$ and $g \in C^1([0, \infty))$ are given, merely provided that ($g(0) \geq 0$ and) $-g$ grows superlinearily. This result holds in all space dimensions and does neither require any symmetry assumptions nor the smallness of certain parameters. Thereby, we expand on a corresponding result for quadratically growing $-g$ proved by Lankeit and Lankeit (Nonlinearity, 32(5):1569--1596, 2019).