论文标题

在介质和原子水平上发现电子能量损失光谱图像中不变的空间特征

Discovering Invariant Spatial Features in Electron Energy Loss Spectroscopy Images on the Mesoscopic and Atomic Levels

论文作者

Roccapriore, Kevin M., Ziatdinov, Maxim, Lupini, Andrew R., Singh, Abhay P., Philipose, Usha, Kalinin, Sergei V.

论文摘要

在过去的二十年中,具有扫描透射电子显微镜(STEM)的电子能量损耗光谱(EEL)成像已成为一种可视化复杂化学,电子,等离子和语音现象中复杂材料和结构的选择技术。鳗鱼数据的可用性需要开发使用具有复杂空间和能量结构的多维数据集的方法。传统上,对这些数据集的分析是基于对单个光谱的分析,一次是基于单个光谱的分析,而单个空间像素之间的空间结构和相关性包含包含基础过程物理学相关信息的单个空间像素之间通常仅通过可视化作为2D映射而被忽略并仅通过可视化。在这里,我们开发了一种基于机器学习的方法和工作流程,以分析3D EELS数据集中的空间结构,并结合了降低维度降低和多通道旋转不变的变异自动编码器的组合。说明了这种方法,用于分析纳米线系统中的等离子现象,以及分别使用低损耗和核心损失鳗鱼在功能氧化物中的核心激发中。本手稿中开发的代码是开源的,可以免费提供,并在此处为有兴趣的读者提供了jupyter笔记本。

Over the last two decades, Electron Energy Loss Spectroscopy (EELS) imaging with a scanning transmission electron microscope (STEM) has emerged as a technique of choice for visualizing complex chemical, electronic, plasmonic, and phononic phenomena in complex materials and structures. The availability of the EELS data necessitates the development of methods to analyze multidimensional datasets with complex spatial and energy structures. Traditionally, the analysis of these data sets has been based on analysis of individual spectra, one at a time, whereas the spatial structure and correlations between individual spatial pixels containing the relevant information of the physics of underpinning processes have generally been ignored and analyzed only via the visualization as 2D maps. Here we develop a machine learning-based approach and workflows for the analysis of spatial structures in 3D EELS data sets using a combination of dimensionality reduction and multichannel rotationally-invariant variational autoencoders. This approach is illustrated for the analysis of both the plasmonic phenomena in a system of nanowires and in the core excitations in functional oxides using low loss and core loss EELS, respectively. The code developed in this manuscript is open sourced and freely available and provided as a Jupyter notebook for the interested reader here.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源