论文标题
在通信约束下的最佳高维和非参数分布测试
Optimal high-dimensional and nonparametric distributed testing under communication constraints
论文作者
论文摘要
我们在分布式框架中得出最小值测试错误,其中数据分配在多台计算机上,并且它们与中央机器的通信仅限于$ b $位。我们研究了高斯白噪声下的$ d $和无限维信号检测问题。我们还得出达到理论下限的分布式测试算法。 我们的结果表明,分布式测试受到从根本上不同的现象,这些现象在分布式估计中未观察到。在我们的发现中,我们表明,可以访问共享随机性的测试协议在某些制度中的性能比不进行的测试协议可以更好地表现。我们还观察到,即使仅使用单个本地计算机上可用的信息,一致的非参数分布式测试始终是可能的,即使只有$ 1 $的通信和相应的测试优于最佳本地测试。此外,我们还得出了自适应非参数分布测试策略和相应的理论下限。
We derive minimax testing errors in a distributed framework where the data is split over multiple machines and their communication to a central machine is limited to $b$ bits. We investigate both the $d$- and infinite-dimensional signal detection problem under Gaussian white noise. We also derive distributed testing algorithms reaching the theoretical lower bounds. Our results show that distributed testing is subject to fundamentally different phenomena that are not observed in distributed estimation. Among our findings, we show that testing protocols that have access to shared randomness can perform strictly better in some regimes than those that do not. We also observe that consistent nonparametric distributed testing is always possible, even with as little as $1$-bit of communication and the corresponding test outperforms the best local test using only the information available at a single local machine. Furthermore, we also derive adaptive nonparametric distributed testing strategies and the corresponding theoretical lower bounds.