论文标题
可靠地评估当今古典计算机和明天的量子计算机上细胞色素P450的电子结构
Reliably assessing the electronic structure of cytochrome P450 on today's classical computers and tomorrow's quantum computers
论文作者
论文摘要
对量子计算机如何用于化学模拟的准确评估,尤其是其潜在的计算优势,提供了有关如何部署这些未来设备的重要背景。为了可靠地执行此评估,量子资源估计必须与试图回答相关化学问题并定义经典模拟前沿的经典模拟结合使用。本文中,我们探讨了评估细胞色素P450酶(CYP)的电子结构所需的量子和经典资源,从而定义了经典的量词优势边界。这是通过分析DMRG+NEVPT2的收敛性和耦合群集单打的收敛性,并在CYP催化循环的模型中对自旋间隙进行了非介质三元组(CCSD(t))计算,该计算表明了多次催化性特征。使用Qubitient量子步行进行相位估计所需的量子资源是针对同一系统计算的。汇编中的表面代码提供了直接与DMRG运行时间进行比较并评估潜在量子优势的运行时估计值。经典和量子资源估计都表明,在足够大的尺度上对CYP模型进行模拟,以平衡动态和多配置电子相关性具有成为量子优势问题的潜力,并强调了古典模拟与化学模拟的量子算法之间的重要相互作用。
An accurate assessment of how quantum computers can be used for chemical simulation, especially their potential computational advantages, provides important context on how to deploy these future devices. In order to perform this assessment reliably, quantum resource estimates must be coupled with classical simulations attempting to answer relevant chemical questions and to define the classical simulation frontier. Herein, we explore the quantum and classical resources required to assess the electronic structure of cytochrome P450 enzymes (CYPs) and thus define a classical-quantum advantage boundary. This is accomplished by analyzing the convergence of DMRG+NEVPT2 and coupled cluster singles doubles with non-iterative triples (CCSD(T)) calculations for spin-gaps in models of the CYP catalytic cycle that indicate multireference character. The quantum resources required to perform phase estimation using qubitized quantum walks are calculated for the same systems. Compilation into the surface-code provides runtime estimates to compare directly to DMRG runtimes and to evaluate potential quantum advantage. Both classical and quantum resource estimates suggest that simulation of CYP models at scales large enough to balance dynamic and multiconfigurational electron correlation has the potential to be a quantum advantage problem and emphasizes the important interplay between classical simulations and quantum algorithms development for chemical simulation.