论文标题
X射线计算机断层扫描图像的自动处理,通过用于建模编织复合纺织品的全景分割
Automated processing of X-ray computed tomography images via panoptic segmentation for modeling woven composite textiles
论文作者
论文摘要
提出了一种基于机器学习的新方法,用于自动生成编织复合纺织品的3D数字几何形状,以克服现有的分析描述和分割方法的局限性。在这种方法中,利用了全磁分割来从X射线计算机断层扫描(CT)图像中产生实例分割的语义面具。这项工作代表了第一个基于深度学习的自动化过程,用于在编织复合纺织品中细分独特的纱线实例。此外,它通过在低对比度CT数据集上提供实例级分段来改善现有方法。框架到框架实例跟踪是通过视频全景分割采用的用于组装3D几何模型的视频综合分段采用的相交方法(IOU)方法。开发了一种纠正识别算法,以提高识别质量(RQ)。采用了全景质量(PQ)度量,以为重建的编织复合纺织品提供新的通用评估度量。发现全景分割网络可以很好地推广到与训练集相似但不能很好地推断出不同几何,纹理和对比度的CT图像的新CT图像。通过捕获纱线流方向,各个纱线之间的接触区以及纱线的空间变化,可以证明这种方法的实用性。
A new, machine learning-based approach for automatically generating 3D digital geometries of woven composite textiles is proposed to overcome the limitations of existing analytical descriptions and segmentation methods. In this approach, panoptic segmentation is leveraged to produce instance segmented semantic masks from X-ray computed tomography (CT) images. This effort represents the first deep learning based automated process for segmenting unique yarn instances in a woven composite textile. Furthermore, it improves on existing methods by providing instance-level segmentation on low contrast CT datasets. Frame-to-frame instance tracking is accomplished via an intersection-over-union (IoU) approach adopted from video panoptic segmentation for assembling a 3D geometric model. A corrective recognition algorithm is developed to improve the recognition quality (RQ). The panoptic quality (PQ) metric is adopted to provide a new universal evaluation metric for reconstructed woven composite textiles. It is found that the panoptic segmentation network generalizes well to new CT images that are similar to the training set but does not extrapolate well to CT images of differing geometry, texture, and contrast. The utility of this approach is demonstrated by capturing yarn flow directions, contact regions between individual yarns, and the spatially varying cross-sectional areas of the yarns.