论文标题

技术报告:在部分已知的环境中进行任务和运动计划的层次结构反应性系统体系结构

Technical Report: A Hierarchical Deliberative-Reactive System Architecture for Task and Motion Planning in Partially Known Environments

论文作者

Vasilopoulos, Vasileios, Castro, Sebastian, Vega-Brown, William, Koditschek, Daniel E., Roy, Nicholas

论文摘要

我们描述了高度动态系统的任务和运动计划体系结构,该架构将基于域独立于采样的审议计划算法与全球反应性计划者结合在一起。我们利用了一个反应性的,矢量野外策划者的发展,即使面对未知或不可预见的障碍,它也可以保证向环境的大区域提供可及的能力。可以使用合同正式对可及性保证进行正式化,从而通过选择一系列反应性行为及其目标配置来纯粹根据这些合同纯粹推理并综合计划,而无需评估目标之间的具体运动计划。这既减少了发现计划的搜索深度,又减少了确保计划所需的样本数量,同时保留了正确的保证。结果是降低了综合计划的计算成本,并提高了执行噪声,模型错误指定或未知障碍的生成计划的鲁棒性。仿真研究表明,即使面对狭窄的通道或不完整的世界信息,我们的分层计划和执行体系结构也可以解决复杂的导航和重新排列任务。

We describe a task and motion planning architecture for highly dynamic systems that combines a domain-independent sampling-based deliberative planning algorithm with a global reactive planner. We leverage the recent development of a reactive, vector field planner that provides guarantees of reachability to large regions of the environment even in the face of unknown or unforeseen obstacles. The reachability guarantees can be formalized using contracts that allow a deliberative planner to reason purely in terms of those contracts and synthesize a plan by choosing a sequence of reactive behaviors and their target configurations, without evaluating specific motion plans between targets. This reduces both the search depth at which plans will be found, and the number of samples required to ensure a plan exists, while crucially preserving correctness guarantees. The result is reduced computational cost of synthesizing plans, and increased robustness of generated plans to actuator noise, model misspecification, or unknown obstacles. Simulation studies show that our hierarchical planning and execution architecture can solve complex navigation and rearrangement tasks, even when faced with narrow passageways or incomplete world information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源