论文标题
科学工作中的可持续性丧失
Loss of sustainability in scientific work
论文作者
论文摘要
几十年来,科学出版物的数量一直在迅速增加,以巨大的速度有效地超越了知识。只有很少的科学里程碑仍然具有相关性并不断吸引引用。在这里,我们量化了科学工作的使用时间,遗忘了今天的工作需要多长时间,以及里程碑论文与被遗忘的论文有何不同。为了回答这些问题,我们研究了所有美国物理社会期刊的完整时间引用网络。我们量化了基于年龄和过去收到的引用数量吸引单个出版物的引用的可能性。我们在科学引文网络动力学的微观生成模型中捕捉了这两个方面,遗忘和引用已经流行作品的趋势。我们发现,引用特定论文随着年龄为幂律的概率,指数为$α\ sim -1.4 $。每当早期纸的特征都以高于临界值($α_c$)高于临界值的缩放指数为特征时,该论文可能会变得“持久”。我们通过样本外预测来验证模型,精度高达90%(AUC $ \ sim 0.9 $)。该模型还允许我们估算未来的预期引文格局,预测2050年引用的95%的论文尚未发表。文章的指数增长,加上一种平均引用的权力遗忘类型和较少引用的论文,这表明信息超负荷的令人担忧的趋势,并引起了对科学出版的长期可持续性的担忧。
For decades the number of scientific publications has been rapidly increasing, effectively out-dating knowledge at a tremendous rate. Only few scientific milestones remain relevant and continuously attract citations. Here we quantify how long scientific work remains being utilized, how long it takes before today's work is forgotten, and how milestone papers differ from those forgotten. To answer these questions, we study the complete temporal citation network of all American Physical Society journals. We quantify the probability of attracting citations for individual publications based on age and the number of citations they have received in the past. We capture both aspects, the forgetting and the tendency to cite already popular works, in a microscopic generative model for the dynamics of scientific citation networks. We find that the probability of citing a specific paper declines with age as a power law with an exponent of $α\sim -1.4$. Whenever a paper in its early years can be characterized by a scaling exponent above a critical value, $α_c$, the paper is likely to become "ever-lasting". We validate the model with out-of-sample predictions, with an accuracy of up to 90% (AUC $\sim 0.9$). The model also allows us to estimate an expected citation landscape of the future, predicting that 95% of papers cited in 2050 have yet to be published. The exponential growth of articles, combined with a power-law type of forgetting and papers receiving fewer and fewer citations on average, suggests a worrying tendency toward information overload and raises concerns about scientific publishing's long-term sustainability.