论文标题
更新的建模和精制的振荡二进制振荡的绝对参数为ERI
Updated modelling and refined absolute parameters of the oscillating eclipsing binary AS Eri
论文作者
论文摘要
我们介绍了基于最多和苔丝光曲线的组合以及在Mercator望远镜,La Palma,La Palma和TCES在Alfred alfred jensch theScope的Alfred tauteScope中运行的光谱图HERMES获得的Algol-type黯然失色二进制系统作为ERI的新研究。主要成分是A3 V型脉动,质量良好的恒星。我们将光和速度数据拟合到包装phoebe,并确定了采用半独立系统配置的最合适的模型。使用最近的(O-C)分析改善了轨道周期,并且两条光曲线之间检测到的相移为2.6641496 $ \ pm $ 0.000000001天。 (O-C)残留物中没有任何环状变化证实了轨道时期的长期稳定性。此外,我们表明,为每条光曲线得出的模型分别需要小差异,例如在温度参数t $ _ {\ rm eff,2} $中。残差说明了新解决方案的高质量。我们获得了以下绝对组件参数:l $ _1 $ = 14.125〜l $ _ {\ odot} $,m $ _1 $ = 2.014 〜m $ $ _ {\ odot} $,r $ _1 $ _1 $ _1 $ = 1.733〜r $ $ _ { 4.345〜 l $ _ {\ odot} $,m $ _2 $ = 0.211〜m $ $ _ {\ odot} $,r $ _2 $ = 2.19〜r $ _ {\ odot} $,log g $ g $ g $ _2 $ _2 $ _2 $ = 3.078〜与t $ _ { 0.662 $ \ pm $ 0.002。尽管从长远来看,轨道周期似乎是稳定的,但我们表明曲线形状受长达数年的调制的影响,这很可能是由于凉爽伴侣的磁性活性所致。
We present a new study of the Algol-type eclipsing binary system AS Eri based on the combination of the MOST and TESS light curves and a collection of very precise radial velocities obtained with the spectrographs HERMES operating at the Mercator telescope, La Palma, and TCES operating at the Alfred Jensch telescope, Tautenburg. The primary component is an A3 V-type pulsating, mass-accreting star. We fitted the light and velocity data with the package PHOEBE, and determined the best-fitting model adopting the configuration of a semi-detached system. The orbital period has been improved using a recent (O-C) analysis and the phase shift detected between both light curves to the value 2.6641496 $\pm$ 0.0000001 days. The absence of any cyclic variation in the (O-C) residuals confirms the long-term stability of the orbital period. Furthermore, we show that the models derived for each light curve separately entail small differences, e.g. in the temperature parameter T$_{\rm eff,2}$. The high quality of the new solutions is illustrated by the residuals. We obtained the following absolute component parameters: L$_1$ = 14.125~L$_{\odot}$, M$_1$ = 2.014~M$_{\odot}$, R$_1$ = 1.733~R$_{\odot}$, log g$_1$ = 4.264, L$_2$ = 4.345~L$_{\odot}$, M$_2$ = 0.211~M$_{\odot}$, R$_2$ = 2.19~R$_{\odot}$, log g$_2$ = 3.078~ with T$_{\rm eff,2}$/T$_{\rm eff,1}$ = 0.662 $\pm$ 0.002. Although the orbital period appears to be stable on the long term, we show that the light-curve shape is affected by a years-long modulation which is most probably due to the magnetic activity of the cool companion.