论文标题
在Picard等级的圆形fano品种的界限上,曲线限制很小
Bounds on the Picard rank of toric Fano varieties with minimal curve constraints
论文作者
论文摘要
我们研究了具有最低理性曲线的家族的光滑感谢您的PICARD等级。我们讨论了Chen-Fu-Hwang的猜想的变体,并证明了他们的陈述版本,该版本以足够高的尺寸恢复了原始猜想。我们还证明了在所有维度上高度的原始猜想的新案例。我们的主要工具来自复曲Mori理论和Fano多塔的组合。
We study the Picard rank of smooth toric Fano varieties possessing families of minimal rational curves of given degree. We discuss variants of a conjecture of Chen-Fu-Hwang and prove a version of their statement that recovers the original conjecture in sufficiently high dimension. We also prove new cases of the original conjecture for high degrees in all dimensions. Our main tools come from toric Mori theory and the combinatorics of Fano polytopes.