论文标题
双极热电Josephson发动机
Bipolar Thermoelectric Josephson Engine
论文作者
论文摘要
由于其费米表面周围的几乎完美的颗粒孔(pH)对称性,金属的热电效应通常很小[1,2]。尽管最初被认为是自相矛盾的[3],但仅当明显破坏pH对称性[10-14]时,才能在超导系统中鉴定嗜热效应[4-8]和线性热电学[9]。在这里,我们通过实验证明,超导隧道连接可以在存在非线性热梯度的情况下产生非常大的双极热电效应,这要归功于自发的pH对称性破坏[15]。我们的交界处显示了$ \ pm150 \的最大热电电压; μ$ V at $ \ pm650 $ mk,与超导间隙成正比。值得注意的是,$ \ pm300 \的相应Seebeck系数\; μ$ V/K约为$ 10^5 $ $倍,比在相同温度下的普通金属预期的倍[16,17]。此外,通过将我们的连接集成到约瑟夫森干涉仪中,我们认识到双极热电约瑟夫森发动机(BTJE)[18]与相位共同的热电器控制[19]。当连接到通用负载时,BTJE在Subkelvin温度下会产生相位可调的电力,高达约140 mw/m $^2 $。此外,我们的设备实现了由电流注入或擦除的持续热电记忆电池的原型[20]。我们预计我们的发现将触发pH对称系统中的热电性,并会导致超导电子中的许多开创性应用[21],尖端的量子技术[22-24]和传感[25]。
Thermoelectric effects in metals are typically small due to the nearly-perfect particle-hole (PH) symmetry around their Fermi surface [1, 2]. Despite being initially considered paradoxical [3], thermophase effects [4-8] and linear thermoelectricity [9] in superconducting systems were identified only when PH symmetry is explicitly broken [10-14]. Here, we experimentally demonstrate that a superconducting tunnel junction can develop a very large bipolar thermoelectric effect in the presence of a nonlinear thermal gradient thanks to spontaneous PH symmetry breaking [15]. Our junctions show a maximum thermovoltage of $\pm150\; μ$ V at $\pm650$ mK, directly proportional to the superconducting gap. Notably, the corresponding Seebeck coefficient of $\pm300\; μ$V/K is roughly $10^5$ times larger than the one expected for a normal metal at the same temperature [16, 17]. Moreover, by integrating our junctions into a Josephson interferometer, we realize a bipolar thermoelectric Josephson engine (BTJE) [18] with phase-coherent thermopower control [19]. When connected to a generic load, the BTJE generates a phase-tunable electric power up to about 140 mW/m$^2$ at subKelvin temperatures. In addition, our device implements the prototype for a persistent thermoelectric memory cell, written or erased by current injection [20]. We expect that our findings will trigger thermoelectricity in PH symmetric systems, and will lead to a number of groundbreaking applications in superconducting electronics [21], cutting-edge quantum technologies [22-24] and sensing [25].