论文标题

全自动树拓扑估计和动脉静脉分类

Fully Automated Tree Topology Estimation and Artery-Vein Classification

论文作者

Khanal, Aashis, Motevali, Saeid, Estrada, Rolando

论文摘要

我们提出了一种基于图形的全自动,基于图形的技术,用于提取视网膜血管拓扑(即如何相互连接)给定一个彩色底面图像。确定这种连通性非常具有挑战性,因为船只在2D图像中相互交叉,掩盖了它们的真实路径。我们通过使用该方法来实现视网膜动脉 - 素食分类的可比最新结果来定量验证我们的提取方法的实用性。我们提出的方法的作用如下:我们使用先前开发的最新分割方法首次将视网膜血管分割。然后,我们估算从提取的血管中估算一个初始图,并将最可能的血流分配给每个边缘。然后,我们使用少数高级操作(HLOS)来修复图中的错误。这些HLO包括分离相邻的节点,移动边缘的端点,并逆转分支的估计血流方向。我们使用新颖的成本函数来找到给定图的最佳HLO操作集。最后,我们表明我们的提取的血管结构是正确的,可以通过沿分支的传播动脉/静脉标记来正确。正如我们的实验表明的那样,我们基于拓扑的动脉素标签在三个数据集上实现了最新的结果:驱动器,宽敞和启发。我们还进行了几项消融研究,以分别验证我们提出的方法的分割和AV标记步骤的重要性。这些消融研究进一步证实,我们的图形提取管道正确地模拟了潜在的血管解剖结构。

We present a fully automatic, graph-based technique for extracting the retinal vascular topology -- that is, how different vessels are connected to each other -- given a single color fundus image. Determining this connectivity is very challenging because vessels cross each other in a 2D image, obscuring their true paths. We quantitatively validated the usefulness of our extraction method by using it to achieve comparable state-of-the-art results in retinal artery-vein classification. Our proposed approach works as follows: We first segment the retinal vessels using our previously developed state-of-the-art segmentation method. Then, we estimate an initial graph from the extracted vessels and assign the most likely blood flow to each edge. We then use a handful of high-level operations (HLOs) to fix errors in the graph. These HLOs include detaching neighboring nodes, shifting the endpoints of an edge, and reversing the estimated blood flow direction for a branch. We use a novel cost function to find the optimal set of HLO operations for a given graph. Finally, we show that our extracted vascular structure is correct by propagating artery/vein labels along the branches. As our experiments show, our topology-based artery-vein labeling achieved state-of-the-art results on three datasets: DRIVE, AV-WIDE, and INSPIRE. We also performed several ablation studies to separately verify the importance of the segmentation and AV labeling steps of our proposed method. These ablation studies further confirmed that our graph extraction pipeline correctly models the underlying vascular anatomy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源