论文标题

存在有限图上的广义自我偶义Chern-Simons方程的解决方案

Existence of solutions to a generalized self-dual Chern-Simons equation on finite graphs

论文作者

Hu, Yuanyang

论文摘要

令$ g =(v,e)$为连接的有限图。我们研究了以下广义Chern-Simons方程的解决方案的存在, ΔU=λ\ Mathrm {e}^{ $δ_{p_ {s}} $是vetex $ p_s $的零质量,而$ p_1,p_2,\ dots,p_n $是图表上任意选择的不同顶点。我们表明,存在批评价值$ \hatλ$,因此当$λ> \hatλ$时,广义的Chern-Simons方程至少具有两个解决方案,当$λ= \hatλ$时,广义的Chern-Simons方程就会有一个解决方案,当$λ<\hatλ$时,Chern-simimizized chern-simons simons emimanseequeation nes nessimate equalation ne sore。

Let $G=(V,E)$ be a connected finite graph. We study the existence of solutions for the following generalized Chern-Simons equation on $G$ \begin{equation*} Δu=λ\mathrm{e}^{u}\left(\mathrm{e}^{u}-1\right)^{5}+4 π\sum_{s=1}^{N} δ_{p_{s}} \quad , \end{equation*} where $λ>0$, $δ_{p_{s}}$ is the Dirac mass at the vetex $p_s$, and $p_1, p_2,\dots, p_N$ are arbitrarily chosen distinct vertices on the graph. We show that there exists a critial value $\hatλ$ such that when $λ> \hatλ$, the generalized Chern-Simons equation has at least two solutions, when $λ= \hatλ$, the generalized Chern-Simons equation has a solution, and when $λ< \hatλ$, the generalized Chern-Simons equation has no solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源