论文标题
romnet:翻新旧的回忆
ROMNet: Renovate the Old Memories
论文作者
论文摘要
在旧照片中翻新记忆是计算机视野领域中有趣的研究主题。这些遗留图像通常会遭受严重和混乱的降解,例如裂缝,噪音和颜色褪色,而缺乏大规模配对的旧照片数据集则使得这项修复任务非常具有挑战性。在这项工作中,我们提出了一个新颖的基于参考的端到端学习框架,该框架可以共同修复并为退化的遗留图片着色。具体而言,所提出的框架由三个模块组成:用于降解恢复的恢复子网络,用于颜色直方直方图匹配和传输的相似子网络,以及一个学会预测以色度参考信号为条件的图像的色度元素的着色子网。整个系统在给定的参考图像中利用了颜色直方图先验,这大大降低了对大规模训练数据的依赖性。除了提出的方法外,我们还创建了第一个带有配对地面真相的公共和现实旧照片数据集,用于评估旧照片修复模型,其中每张旧照片与Photoshop专家配对了手动修复的原始图像。我们对合成和现实世界数据集进行的广泛实验表明,我们的方法在定量和质量上都显着优于最先进的方法。
Renovating the memories in old photos is an intriguing research topic in computer vision fields. These legacy images often suffer from severe and commingled degradations such as cracks, noise, and color-fading, while lack of large-scale paired old photo datasets makes this restoration task very challenging. In this work, we present a novel reference-based end-to-end learning framework that can jointly repair and colorize the degraded legacy pictures. Specifically, the proposed framework consists of three modules: a restoration sub-network for degradation restoration, a similarity sub-network for color histogram matching and transfer, and a colorization subnet that learns to predict the chroma elements of the images conditioned on chromatic reference signals. The whole system takes advantage of the color histogram priors in a given reference image, which vastly reduces the dependency on large-scale training data. Apart from the proposed method, we also create, to our knowledge, the first public and real-world old photo dataset with paired ground truth for evaluating old photo restoration models, wherein each old photo is paired with a manually restored pristine image by PhotoShop experts. Our extensive experiments conducted on both synthetic and real-world datasets demonstrate that our method significantly outperforms state-of-the-arts both quantitatively and qualitatively.