论文标题

TTS-GAN:基于变压器的时间序列生成对抗网络

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network

论文作者

Li, Xiaomin, Metsis, Vangelis, Wang, Huangyingrui, Ngu, Anne Hee Hiong

论文摘要

以时间序列形式出现的信号测量是医疗机学习应用中使用的最常见数据类型之一。但是,这样的数据集通常很小,使深度神经网络体系结构的培训无效。对于时间序列,我们可以用来扩展数据集大小的数据增强技巧套件受到维护信号的基本属性的限制。生成对抗网络(GAN)生成的数据可以用作另一个数据增强工具。基于RNN的GAN无法有效地模拟具有不规则时间关系的长时间数据点的事实。为了解决这些问题,我们引入了TTS-GAN,这是一种基于变压器的GAN,可以成功地生成与真实长度相似的任意长度的现实合成时间序列数据序列。 GAN模型的生成器和鉴别网络都是使用纯变压器编码器体系结构构建的。我们使用可视化和降低降低技术来证明真实和生成的时间序列数据的相似性。我们还将生成数据的质量与最佳现有替代方案进行了比较,即基于RNN的时间序列GAN。

Signal measurements appearing in the form of time series are one of the most common types of data used in medical machine learning applications. However, such datasets are often small, making the training of deep neural network architectures ineffective. For time-series, the suite of data augmentation tricks we can use to expand the size of the dataset is limited by the need to maintain the basic properties of the signal. Data generated by a Generative Adversarial Network (GAN) can be utilized as another data augmentation tool. RNN-based GANs suffer from the fact that they cannot effectively model long sequences of data points with irregular temporal relations. To tackle these problems, we introduce TTS-GAN, a transformer-based GAN which can successfully generate realistic synthetic time-series data sequences of arbitrary length, similar to the real ones. Both the generator and discriminator networks of the GAN model are built using a pure transformer encoder architecture. We use visualizations and dimensionality reduction techniques to demonstrate the similarity of real and generated time-series data. We also compare the quality of our generated data with the best existing alternative, which is an RNN-based time-series GAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源