论文标题
自由呼吸运动补偿4D(3D+呼吸)T2加权涡轮自旋Echo MRI用于身体成像
Free-breathing motion compensated 4D (3D+respiration) T2-weighted turbo spin-echo MRI for body imaging
论文作者
论文摘要
目的:开发和评估自由呼吸的呼吸运动补偿4D(3D+呼吸)$ T_2 $加权的涡轮自旋回声序列,适用于放射学和MR引导放射疗法。 方法:使用带有螺旋曲线排序(RCASPR)的笛卡尔采集连续获取K空间数据,以提供与常规线性相位编码顺序的匹配对比,并将数据分类为多个呼吸阶段。低分辨率呼吸相关的4D图像是通过压缩传感重建的,用于估计非刚性变形矢量场,随后将其用于运动补偿图像重建。将RCASPR采样与线性和CASPR采样相提并论,以点传播功能(PSF)以及与计算机,幻影和体内实验中的图像对比。使用网格搜索确定低分辨率4D-MRI(空间分辨率和时间正则化)的重建参数。在八名健康志愿者中评估了拟议的运动补偿RCASPR,并将其与线性采样的自由呼吸扫描进行了比较。根据视觉检查和通过梯度熵进行定量比较图像质量。 结果:RCASPR提供了出色的PSF(在KY中相似,KZ中的较窄),与线性采样相比,图像对比度没有明显差异。最佳4D-MRI重建参数是空间分辨率= $ 4.5 mm^3 $和$λ_t= 10^{ - 4} $。线性的群平均梯度熵为22.31,RCASPR为22.20,软门控RCASPR为22.14,运动补偿RCASPR为22.02。 结论:拟议的运动补偿RCASPR可实现高质量的自由呼吸T2-TSE,图像对比度和扫描时间的变化很小。因此,该方法可以将临床使用的3D TSE序列直接转移到自由呼吸中。
Purpose: To develop and evaluate a free-breathing respiratory motion compensated 4D (3D+respiration) $T_2$-weighted turbo spin echo sequence with application to radiology and MR-guided radiotherapy. Methods: k-space data are continuously acquired using a rewound Cartesian acquisition with spiral profile ordering (rCASPR) to provide matching contrast to the conventional linear phase encode ordering and to sort data into multiple respiratory phases. Low-resolution respiratory-correlated 4D images were reconstructed with compressed sensing and used to estimate non-rigid deformation vector fields, which were subsequently used for a motion compensated image reconstruction. rCASPR sampling was compared to linear and CASPR sampling in terms of point-spread-function (PSF) and image contrast with in silico, phantom and in vivo experiments. Reconstruction parameters for low-resolution 4D-MRI (spatial resolution and temporal regularization) were determined using a grid search. The proposed motion compensated rCASPR was evaluated in eight healthy volunteers and compared to free-breathing scans with linear sampling. Image quality was compared based on visual inspection and quantitatively by means of the gradient entropy. Results: rCASPR provided a superior PSF (similar in ky and narrower in kz) and showed no considerable differences in images contrast compared to linear sampling. The optimal 4D-MRI reconstruction parameters were spatial resolution=$4.5 mm^3$ and $λ_t=10^{-4}$. The groupwise average gradient entropy was 22.31 for linear, 22.20 for rCASPR, 22.14 for soft-gated rCASPR and 22.02 for motion compensated rCASPR. Conclusion: The proposed motion compensated rCASPR enables high quality free-breathing T2-TSE with minimal changes in image contrast and scan time. The proposed method therefore enables direct transfer of clinically used 3D TSE sequences to free-breathing.