论文标题
更多(主要是)更好:在联邦图神经网络中的后门攻击中
More is Better (Mostly): On the Backdoor Attacks in Federated Graph Neural Networks
论文作者
论文摘要
图形神经网络(GNN)是一类用于处理图形域信息的基于深度学习的方法。 GNN最近已成为一种广泛使用的图形分析方法,因为它们可以为复杂的图形数据学习表示形式。但是,由于隐私问题和法规限制,集中的GNN可能很难应用于数据敏感的情况。 Federated Learning(FL)是一项新兴技术,为保护隐私设置而开发,当几个方需要协作培训共享的全球模型时。尽管几项研究工作已应用于培训GNN(联邦GNN),但对他们对后门攻击的鲁棒性尚无研究。 本文通过在联邦GNNS进行两种类型的后门攻击来弥合这一差距:集中式后门攻击(CBA)和分发后门攻击(DBA)。我们的实验表明,在几乎所有评估的情况下,DBA攻击成功率高于CBA。对于CBA,即使对抗方的训练集嵌入了全球触发因素,所有本地触发器的攻击成功率也类似于全球触发因素。为了进一步探索联邦GNN中两次后门攻击的特性,我们评估了不同数量的客户,触发尺寸,中毒强度和触发密度的攻击性能。此外,我们探索了DBA和CBA对一个防守的鲁棒性。我们发现,这两次攻击都对被调查的防御措施进行了强大的强大,因此有必要将联邦GNN中的后门攻击视为需要自定义防御的新威胁。
Graph Neural Networks (GNNs) are a class of deep learning-based methods for processing graph domain information. GNNs have recently become a widely used graph analysis method due to their superior ability to learn representations for complex graph data. However, due to privacy concerns and regulation restrictions, centralized GNNs can be difficult to apply to data-sensitive scenarios. Federated learning (FL) is an emerging technology developed for privacy-preserving settings when several parties need to train a shared global model collaboratively. Although several research works have applied FL to train GNNs (Federated GNNs), there is no research on their robustness to backdoor attacks. This paper bridges this gap by conducting two types of backdoor attacks in Federated GNNs: centralized backdoor attacks (CBA) and distributed backdoor attacks (DBA). Our experiments show that the DBA attack success rate is higher than CBA in almost all evaluated cases. For CBA, the attack success rate of all local triggers is similar to the global trigger even if the training set of the adversarial party is embedded with the global trigger. To further explore the properties of two backdoor attacks in Federated GNNs, we evaluate the attack performance for a different number of clients, trigger sizes, poisoning intensities, and trigger densities. Moreover, we explore the robustness of DBA and CBA against one defense. We find that both attacks are robust against the investigated defense, necessitating the need to consider backdoor attacks in Federated GNNs as a novel threat that requires custom defenses.