论文标题
最大$ l^p $ - 用于抽象演化方程,并应用于闭环边界反馈控制问题
Maximal $L^p$-regularity for an abstract evolution equation with applications to closed-loop boundary feedback control problems
论文作者
论文摘要
在本文中,我们提出了一个抽象的最大$ l^p $ - 定期结果,最高$ t = \ infty $,它被调整为捕获抛物线类型的(线性)偏微分方程,该方程定义在有限的尺寸和有限的尺寸稳定性,稳定性,反馈控件(部分)上(一部分)。插图还包括一个更古典的边界抛物线示例外,还有两个最近的设置:(i)$ 3D $ -NAVIER-Stokes方程,具有有限的尺寸,局部,边界切向切向反馈稳定控制以及具有有限尺寸,本地化,反馈,稳定性的有限尺寸,稳定性的BousSinesQ系统,用于热力控制,用于热力控制。
In this paper we present an abstract maximal $L^p$-regularity result up to $T = \infty$, that is tuned to capture (linear) Partial Differential Equations of parabolic type, defined on a bounded domain and subject to finite dimensional, stabilizing, feedback controls acting on (a portion of) the boundary. Illustrations include, beside a more classical boundary parabolic example, two more recent settings: (i) the $3d$-Navier-Stokes equations with finite dimensional, localized, boundary tangential feedback stabilizing controls as well as Boussinesq systems with finite dimensional, localized, feedback, stabilizing, Dirichlet boundary control for the thermal equation.