论文标题
FREPGAN:使用频率级扰动的稳健深击检测
FrePGAN: Robust Deepfake Detection Using Frequency-level Perturbations
论文作者
论文摘要
已经提出了各种深泡检测器,但是在训练环境之外仍存在挑战以检测未知类别或GAN模型的图像。此类问题是由过度拟合的问题引起的,我们从自己的分析和以前的研究中发现,源自生成图像中的频率级别。我们发现,忽略频率的工件可以改善各种GAN模型的检测器的概括,但是它可以降低训练有素的GAN模型的模型性能。因此,我们设计了一个框架来概括已知和看不见的GAN模型的深泡探测器。我们的框架生成了频率摄动图,以使生成的图像与真实图像无法区分。通过更新DeepFake探测器以及对摄动发生器的训练,我们的模型进行了训练,可以在初始迭代时检测频率级别的伪像,并考虑最后一次迭代时图像级的不规则性。对于实验,我们设计的新测试场景与GAN模型,颜色操纵和对象类别的训练设置不同。许多实验验证了我们的Deepfake探测器的最新性能。
Various deepfake detectors have been proposed, but challenges still exist to detect images of unknown categories or GAN models outside of the training settings. Such issues arise from the overfitting issue, which we discover from our own analysis and the previous studies to originate from the frequency-level artifacts in generated images. We find that ignoring the frequency-level artifacts can improve the detector's generalization across various GAN models, but it can reduce the model's performance for the trained GAN models. Thus, we design a framework to generalize the deepfake detector for both the known and unseen GAN models. Our framework generates the frequency-level perturbation maps to make the generated images indistinguishable from the real images. By updating the deepfake detector along with the training of the perturbation generator, our model is trained to detect the frequency-level artifacts at the initial iterations and consider the image-level irregularities at the last iterations. For experiments, we design new test scenarios varying from the training settings in GAN models, color manipulations, and object categories. Numerous experiments validate the state-of-the-art performance of our deepfake detector.