论文标题
在中间雷诺数的互惠游泳号码
Reciprocal swimming at intermediate Reynolds number
论文作者
论文摘要
在Stokes流动中,Purcell的扇贝定理禁止具有时间可逆(相互)游泳的对象。在存在惯性的情况下,这种限制得到了缓解,并且可以相互变形的身体可以游泳。最近的许多作品研究了在中间雷诺数中相互游泳的二聚体模型〜1-1000。这些显示了有趣的结果(例如,游泳方向的转换是惯性的函数),但结果有所不同,并且似乎是特定于病例的。在这里,我们介绍了一个通用模型,并研究了中间RE时小振幅运动的振荡长度的不对称球形二聚体的行为。在我们的分析中,我们对粒子和流体惯性之间的重要区别进行了重要的区别,两者都需要分别考虑。我们渐近地扩展了小幅度限制的Navier-Stokes方程,以获得线性PDES系统。使用数值(有限元)和分析性(相互定理,反射方法)方法的组合,我们解决了系统以获得二聚体的游泳速度并表明有两种机制引起运动:边界条件(有效的滑动速度)和Reynolds的压力。每种机制均由一个球体的运动和1)在另一个球体的运动之间和1)另一个球体的振荡背景流程之间驱动,而另一个运动诱导的背景流以及2)由对方的存在引起的几何不对称。因此,我们可以统一并解释其他作品中观察到的行为。我们的结果表明,在有限的颗粒和流体惯性的参数空间中,敏感,违反直觉和丰富的运动性如何。
In Stokes flow, Purcell's scallop theorem forbids objects with time-reversible (reciprocal) swimming strokes from moving. In the presence of inertia, this restriction is eased and reciprocally deforming bodies can swim. A number of recent works have investigated dimer models that swim reciprocally at intermediate Reynolds numbers Re ~ 1-1000. These show interesting results (e.g. switches of the swim direction as a function of inertia) but the results vary and seem to be case-specific. Here, we introduce a general model and investigate the behaviour of an asymmetric spherical dimer of oscillating length for small-amplitude motion at intermediate Re. In our analysis we make the important distinction between particle and fluid inertia, both of which need to be considered separately. We asymptotically expand the Navier-Stokes equations in the small amplitude limit to obtain a system of linear PDEs. Using a combination of numerical (Finite Element) and analytical (reciprocal theorem, method of reflections) methods we solve the system to obtain the dimer's swim speed and show that there are two mechanisms that give rise to motion: boundary conditions (an effective slip velocity) and Reynolds stresses. Each mechanism is driven by two classes of sphere-sphere interactions, between one sphere's motion and 1) the oscillating background flow induced by the other's motion, and 2) a geometric asymmetry induced by the other's presence. We can thus unify and explain behaviours observed in other works. Our results show how sensitive, counter-intuitive and rich motility is in the parameter space of finite inertia of particles and fluid.